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Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

The Physical Phenomena

Theoretical ideas:

Self organization processes. Large number of degrees of

freedom (turbulence).

This has to be explained using statistical physics !!!

Mainly out of equilibrium statistical mechanics. We have to work

out new theoretical concepts with such phenomena in mind.
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The 2D Stochastic-Navier-Stokes (SNS) Equations

The simplest model for two dimensional turbulence

Navier Stokes equation with random forces

∂ω

∂ t
+u.∇ω = ν∆ω−αω +

√
σ fs

where ω = (∇∧u) .ez is the vorticity, fs is a random force, α is the

Rayleigh friction coe�cient.

An academic model with experimental realizations (Sommeria

and Tabeling experiments, rotating tanks, magnetic �ows, and

so on). Analogies with geophysical �ows (Quasi Geostrophic

and Shallow Water layer models).
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Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Equilibrium: the 2D Euler Equations

2D Euler equations:

∂ω

∂ t
+u.∇ω = 0

Vorticity ω = (∇∧u) .ez . Stream function ψ : u = ez ×∇ψ ,

ω = ∆ψ

Conservative dynamics - Hamiltonian (non canonical) and time

reversible

Stationary solutions of 2D Euler Eq.:

u.∇ω = 0 or equivalently ω = f (ψ)

Stationary solutions of 2D Euler equations play a crucial role.

Degeneracy: what does select f ?

f can be predicted using classical equilibrium statistical

mechanics
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Equilibrium: the 2D Euler Equations

Conservative dynamics - Hamiltonian and time reversible

2D Euler equations:

∂ω

∂ t
+u.∇ω = 0

Vorticity ω = (∇∧u) .ez . Stream function ψ : u = ez ×∇ψ ,

ω = ∆ψ

Invariants:

Energy: E [ω] =
1

2

∫
D
d2x v2 = E0

Casimir's functionals: Cs [ω] =
∫

D
d2x s(ω)

Vorticity distribution: d (σ) =
dA

dσ
with A(σ) =

∫
D
d2x χ{ω(x)≤σ}
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Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

The 1-1/2 Layer Quasi-Geostrophic Model

It describes a layer of �uid in the limit of small Rossby numbers

(strong rotation compared to nonlinear terms)

∂q

∂ t
+v ·∇q = 0 ; v = ez ×∇ψ ; q = ∆ψ− ψ

R2

The Rossby deformation radius:

R =

√
gH

2Ω
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Irreversible relaxation

Outline

1 Statistical mechanics of ocean jets and vortices

Equilibrium statistical mechanics

Ocean rings (mesoscale eddies)

Strong mid-basin ocean jets

2 Non-equilibrium phase transitions

Experiments

Random changes of �ow topology in the 2D S-Navier-Stokes

Eq. (F. B., E. Simonnet and H. Morita)

Random transition in experiments (M.M., J.S., and F.B.)

3 Irreversible relaxation of the 2D Euler equations

Irreversibility in �uid mechanics

Nonlinear damping for the 2D Euler Eq. (F.B, and H.M.)

The Kolmogorov Flow
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Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Equilibrium statistical mechanics
Ocean rings (mesoscale eddies)
Strong mid-basin ocean jets

Statistical Mechanics for 2D and Geophysical Flows

Statistical hydrodynamics ? Very complex problems.

Example: Intermittency in 3D turbulence ; phenomenological

approach, simpli�ed models (Kraichnan).

It may be much simpler for 2D or geophysical �ows:

conservative systems.

Statistical equilibrium: A very old idea, some famous contributions

Onsager (1949), Joyce and Montgomerry (1970), Caglioti

Marchioro Pulvirenti Lions (1990), Robert Sommeria (1991),

Miller (1991), Eyink and Spohn (1994), Kiessling and

Lebowitz (1994).
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Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Equilibrium statistical mechanics
Ocean rings (mesoscale eddies)
Strong mid-basin ocean jets

Robert-Sommeria-Miller (RSM) Theory
Equilibrium statistical mechanics : the most probable vorticity �eld

A probabilistic description of the vorticity �eld q: ρ (x,σ) is

the local probability to have q (x) = σ at point x

A measure of the number of microscopic �eld q corresponding

to a probability ρ (Liouville and Sanov theorems):

Boltzmann-Gibbs Entropy: S [ρ]≡−
∫

D
dx

∫ +∞

−∞

dσ ρ logρ

The microcanonical RSM variational problem (MVP):

S(E0,d) = sup
{ρ|N[ρ]=1}

{S [ρ] | E [q] = E0 ,D [ρ] = d } (MVP).

Critical points are stationary �ows of Quasi Geostrophic model:

q = f (ψ)
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Equilibrium Statistical Mechanics for Geophysical Flows
The Robert-Sommeria-Miller theory

Statistical mechanics of the Potential Vorticity mixing:
emergence from random initial conditions , stability ,
predictability of the �ow organization
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Great Red Spot of Jupiter
Real Flow and Statistical Mechanics Predictions (1-1/2 layer QG model)

Observation data (Voyager) Statistical equilibrium

A very good agreement. A simple model, analytic description,

from theory to observation + New predictions.

F. BOUCHET and J. SOMMERIA 2002 JFM (QG model)
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The Simplest Ocean Model
The 1-1/2 Layer Quasi-Geostrophic Model

We describe the upper layer of an ocean by the Quasi Geostrophic

model (one and half layer):

∂q

∂ t
+v ·∇q = 0 ; v = ez ×∇ψ ; q = ∆ψ− ψ

R2
+ β̃y

An extremely rough model of an ocean. The simplest one

Two simple questions.

1 What can equilibrium statistical mechanics teach us about

mesoscale eddies?

2 Does it exist statistical equilibria with strong eastward mid

basin jets (Gulf-Stream Kuroshio)?
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Ocean Rings (Mesoscale Ocean Vortices)
Gulf Stream rings - Agulhas rings - Meddies - etc ...

Hallberg-Gnanadesikan -

JPO 2006
Chelton and co. - GRL 2007

A large part of mesoscale variability is explained by rings of

size 100−200 km (several Rossby deformation radius).

Both cyclonic and anticyclonic rings drift westward with a

velocity β̃R2.
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The 1-1/2 Layer Quasi-Geostrophic Model
First case: no beta e�ect β̃ = 0

∂q

∂ t
+v ·∇q = 0 ; v = ez ×∇ψ ; q = ∆ψ− ψ

R2
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Ocean jets and vortices
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Equilibrium statistical mechanics
Ocean rings (mesoscale eddies)
Strong mid-basin ocean jets

Variational Problem for Statistical Equilibria
(The case of the 1-1/2 layer Quasi Geostrophic model)

Variational problem: limit R → 0. (φ = ψ/R2).{
min{FR [φ ] |with A [φ ] given}

with FR [φ ] =
∫
D dr

[
R2(∇φ)2

2
+ f (φ)

]
and A [φ ] =

∫
D drφ .

The function f : two minima Phase coexistence

An analogy with �rst order phase transitions.

Modica (90'), function with bounded variations.
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Reduction to a One Dimensional Variational Problem
An isoperimetrical problem

A variational problem for the jet shape (interface)

FR [φR ] = 2RecL+o (R) .

Laplace equation:
ec
r

=−uα1.
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Ocean Rings are Statistical Equilibria
Analogy with �rst order phase transition: strong jets + minimization of the length for a
�xed area

FR [φR ] = 2RecL and
ec
r

= uα1

Without topography: vortices are rings (like bubbles in usual

thermodynamics).

Ring statistical equilibria
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Statistical Mechanics Explains the Westward Drift
QG 1-1/2 layer model with beta e�ect h (y) = β̃y in a channel geometry

In a domain with translational symmetry (channel), using

Noether's theorem we obtain a new invariant:

L =
∫
d2ryq

Statistical equilibria with this new invariant:

q = (s ′)−1 (−βψ + γy)
Equilibria are steady solution of the QG eq. in a reference

frame drifting with constant velocity Vγex .

Vγ =−β̃R2ex (westward drift)

In the literature, −β̃R2ex is referred as the speed of non

dispersive baroclinic waves. (Chelton and co. GRL 2007 -

McWilliams and Flierl JPO 1979).

Conclusion: Ocean rings are statistical equilibria. Stat mech

explains their observed drift properties.F. Bouchet CNRS�ENSL Phase transitions
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Ocean Rings (Mesoscale Ocean Vortices)
Gulf Stream rings - Agulhas rings - Meddies - etc ...

Hallberg-Gnanadesikan -

JPO 2006
Chelton and co. - GRL 2007

Ocean rings are statistical equilibria.

Stat mech explains their observed drift properties.

F. Bouchet CNRS�ENSL Phase transitions
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Outline

1 Statistical mechanics of ocean jets and vortices

Equilibrium statistical mechanics

Ocean rings (mesoscale eddies)

Strong mid-basin ocean jets

2 Non-equilibrium phase transitions

Experiments

Random changes of �ow topology in the 2D S-Navier-Stokes

Eq. (F. B., E. Simonnet and H. Morita)

Random transition in experiments (M.M., J.S., and F.B.)

3 Irreversible relaxation of the 2D Euler equations

Irreversibility in �uid mechanics

Nonlinear damping for the 2D Euler Eq. (F.B, and H.M.)

The Kolmogorov Flow
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Is the map of ocean currents a statistical equilibrium ?

North Atlantic sea surface

height

A sketch of ocean currents

F. Bouchet CNRS�ENSL Phase transitions
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Variational Problem for Statistical Equilibria
(The case of the 1-1/2 layer Quasi Geostrophic model)

Variational problem: limit R → 0. (φ = ψ/R2).{
min{FR [φ ] |with A [φ ] given}

with FR [φ ] =
∫
D dr

[
R2(∇φ)2

2
+ f (φ)

]
and A [φ ] =

∫
D drφ .

The function f : two minima Phase coexistence

An analogy with �rst order phase transitions.

Modica (90'), function with bounded variations.

F. Bouchet CNRS�ENSL Phase transitions
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Strong Eastward Jets are Statistical Equilibria
Statistical equilibria of the QG 1-1/2 layer in a closed basin h(y) = 0

FR [φR ] = 2RecL and
ec
r

= uα1

The states with negative PV to the north (eastward jet), and

positive PV to the south (westward jet) are equivalent.

The beta e�ect h(y) = β̃y will break the symmetry between

westward and eastward jets.

F. Bouchet CNRS�ENSL Phase transitions
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Strong Eastward Jets are not GLOBAL Statistical Equilibria

FR [φR ] = 2RecL−2Ru
∫
A+

dl βy

FEastward > FWestward

Conclusion: With a beta e�ect, global statistical equilibria are the

ones with westward jets. The bad ones !.
F. Bouchet CNRS�ENSL Phase transitions
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Strong Eastward Jets may be metastable Statistical
Equilibria

We study the local stability of strong eastward jets with topography

h (y) = β̃y = βy −ψ2/R
2 with ψ2 = ay .

FR [φR ] = 2RecL−2Ru
∫
A+

dl β̃y

δ
2F ≥

[
−2uβ̃ +Re

(
kπ

Lx

)2
]∫

dx (δ l)2 .

We have local free energy minima (for all δ l , δ 2F ≥ 0) if

β̃ < β̃c =
1

2

e

u

π2

L2x
R.

Conclusion 1: With a low e�ective beta e�ect, eastward jets are

metastable statistical equilibria.

Conclusion 2: In the ocean case, eastward jets are probably

marginally unstable, from a statistical mechanics point of view.F. Bouchet CNRS�ENSL Phase transitions
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Equilibrium Statistical Mechanics and Oceans
Some �rst results in the QG 1-1/2 layer model - What else ?

Ocean mesoscale vortices (rings) are statistical equilibria.

Global statistical equilibria are �ows with strong midbasin

westward jets (incompatible with the actual forcing by the

wind).

Strong eastward jets are probably marginally unstable, from a

statistical mechanics point of view.

Perspectives: Kuroshio bistability - More properties of the

rings - Circumpolar antarctic current - Less naive models.
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Other Recent Results for the Equilibrium RSM Theory

Simpli�ed variational problems for the statistical equilibria of 2D
�ows. F. Bouchet, Physica D, 2008

Invariant measures of the 2D Euler and Vlasov equations. F.
Bouchet and M. Corvellec, J. Stat. Mech., 2010

Equilibrium phase transitions in 2D and geophysical �ows A.
Venaille and F. Bouchet, J. Stat. Phys., 2011

Phase transitions, ensemble inequivalence
and Fofono� �ows. A. Venaille and F.
Bouchet, Phys. Rev. Lett.

Are strong mid-basin eastward jets

(Gulf Stream, Kuroshio) statistical

equilibria? A. Venaille and F. Bouchet,

accepted for publication in JPO
Antoine Venaille
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Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Random transitions in real �ows
Random change of �ow topology (E.S., H.M. and F.B.)
Random transitions in experiments (M.M., J.S. and F.B.)

The 2D Stochastic-Navier-Stokes (SNS) Equations

The simplest model for two dimensional turbulence.

Navier Stokes equation with a random force

∂ω

∂ t
+u.∇ω = ν∆ω−αω +

√
σ fs (1)

where ω = (∇∧u) .ez is the vorticity, fs is a random force, α is the

Rayleigh friction coe�cient.

An academic model with experimental realizations (Sommeria,

Tabeling, Ecke experiments, rotating tanks, magnetic �ows,

soap �lms, and so on). Analogies with geophysical �ows.

F. Bouchet CNRS�ENSL Phase transitions
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Numerical Simulation of the 2D Stochastic-NS Eq.

Self similar growth of a dipole

structure, for the 2D S-NS Eq.

Left : vorticity �eld.

Bottom : vorticity pro�les.

M Chertkov, C Connaughton, I Kolokolov, V Lebedev (PRL 2007)

Also M. G. Shats, H. Xia, H. Punzmann and G. Falkovich (PRL 2007)
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The 2D Stochastic Navier-Stokes Equations

∂ω

∂ t
+u.∇ω = ν∆ω +

√
νfs

Some recent mathematical results: Kuksin, Sinai, Shirikyan,

Bricmont, Kupianen, Hairer, etc;

Existence of a stationary measure µν . Existence of limν→0 µν ,
In this limit, almost all trajectories are solutions of the 2D
Euler equations.

We would like to obtain more physical results:

What is the link of this limit ν → 0 with the RSM theory?
Will we stay close to some steady solutions of the 2D Euler
equations?
Can we describe these statistically stationary states and their
properties?

F. Bouchet CNRS�ENSL Phase transitions
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Experiments

Random changes of �ow topology in the 2D S-Navier-Stokes

Eq. (F. B., E. Simonnet and H. Morita)
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3 Irreversible relaxation of the 2D Euler equations

Irreversibility in �uid mechanics

Nonlinear damping for the 2D Euler Eq. (F.B, and H.M.)

The Kolmogorov Flow
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Non-Equilibrium Phase Transitions in Real Flows
Rotating tank experiments (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states:

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and

M. Ghil)
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Random Transitions in Other Turbulence Problems
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

VKS experiment Earth

(VKS experiment)

Other examples :

Turbulent convection, Van Karman and Couette turbulence.

Multistability in the atmosphere, weather regimes, and so on.
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Non-Equilibrium Phase Transitions in Real Flows
The Kuroshio current bistability (two layer Quasi-Geostrophic or primitive equations
dynamics)

See surface temperature of the paci�c ocean, east of Japan

Kuroshio paths and bistability timeserie
F. Bouchet CNRS�ENSL Phase transitions
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The 2D Stochastic Navier-Stokes Equations

The 2D Stochastic Navier Stokes equations:

∂ω

∂ t
+u.∇ω = ν∆ω−αω +

√
2αfs , (2)

where fs is a random force (white in time, smooth in space).

We use very small Rayleigh friction, to observe large scale

energy condensation (this is not the inverse cascade regime).

We study the limit: limα→0 limν→0 (ν � α) (Re� Rα � 1)

(Weak forces and dissipation).

We have time scale separations:

turnover time = 1�1/α = forcing or dissipation time.

F. Bouchet CNRS�ENSL Phase transitions
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Large Scale Structures and Euler Eq. Steady States

∂ω

∂ t
+u.∇ω = ν∆ω−αω +

√
2αfs (3)

Time scale separation: magenta terms are small.

At �rst order, the dynamics is nearly a 2D Euler dynamics.

The �ow self organizes and converges towards steady solutions

of the Euler Eq.:

u.∇ω = 0 or equivalently ω = f (ψ)

where the Stream Function ψ is given by: u = ez ×∇ψ .

Steady states of the Euler equation will play a crucial role.

Degeneracy: what does select f ?

F. Bouchet CNRS�ENSL Phase transitions
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Steady states of the Euler equation will play a crucial role.

Degeneracy: what does select f ?
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Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Random transitions in real �ows
Random change of �ow topology (E.S., H.M. and F.B.)
Random transitions in experiments (M.M., J.S. and F.B.)

Steady States of Euler Eq. as Maxima of Variational
Problems
Energy-Casimir Variational Problems

S(E ) = max
ω

{∫
D
dr s (ω)

∣∣∣1
2

∫
D
dr

v2

2
= E

}
.

Numerical results: Z. Yin, D. C. Montgomery, and H. J. H. Clercx,
Phys. Fluids (2003).

Maxima: ω = ∆ψ =
(
s
′
)−1

(βψ) (stable steady states of the

Euler Eq.).

In the following, normal form analysis with

s (ω) =−ω2

2
+a4

ω4

4
+ ...

Geometry parameter g = E (λ1−λ2) ∝ (Lx −Ly ).
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Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Random transitions in real �ows
Random change of �ow topology (E.S., H.M. and F.B.)
Random transitions in experiments (M.M., J.S. and F.B.)

Steady States for the 2D-Euler Eq. (doubly periodic)

Bifurcation analysis: degeneracy removal, either by the domain

geometry (g) or by the nonlinearity of the vorticity-stream function

relation (f , parameter a4).

Derivation: normal form for an Energy-Casimir variational problem.

A general degeneracy removal mechanism.
F. Bouchet CNRS�ENSL Phase transitions
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Irreversible relaxation

Random transitions in real �ows
Random change of �ow topology (E.S., H.M. and F.B.)
Random transitions in experiments (M.M., J.S. and F.B.)

Numerical Simulation of the 2D Stochastic NS Eq.

Very long relaxation times. 105 turnover times.

F. Bouchet CNRS�ENSL Phase transitions



Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Random transitions in real �ows
Random change of �ow topology (E.S., H.M. and F.B.)
Random transitions in experiments (M.M., J.S. and F.B.)

Numerical Simulation of the 2D Stochastic NS Eq.

Very long relaxation times. 105 turnover times.

F. Bouchet CNRS�ENSL Phase transitions



Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Random transitions in real �ows
Random change of �ow topology (E.S., H.M. and F.B.)
Random transitions in experiments (M.M., J.S. and F.B.)

Non-Equilibrium Stationary States: Dipoles

Are we close to some steady states of the Euler Eq.?
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Random transitions in real �ows
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Vorticity-Streamfunction Relation

Conclusion: we are close to steady states of the Euler Eq.
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Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Random transitions in real �ows
Random change of �ow topology (E.S., H.M. and F.B.)
Random transitions in experiments (M.M., J.S. and F.B.)

Steady States for the 2D-Euler Eq. (doubly periodic)

A second order phase transition.
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Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Random transitions in real �ows
Random change of �ow topology (E.S., H.M. and F.B.)
Random transitions in experiments (M.M., J.S. and F.B.)

Non-Equilibrium Phase Transition
The time series and PDF of the Order Parameter

Order parameter : z1 =
∫
dxdy exp(iy)ω (x ,y).

For unidirectional �ows |z1| ' 0, for dipoles |z1| ' 0.6−0.7.
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Non-equilibrium

Irreversible relaxation

Random transitions in real �ows
Random change of �ow topology (E.S., H.M. and F.B.)
Random transitions in experiments (M.M., J.S. and F.B.)

Outline

1 Statistical mechanics of ocean jets and vortices

Equilibrium statistical mechanics

Ocean rings (mesoscale eddies)

Strong mid-basin ocean jets

2 Non-equilibrium phase transitions

Experiments

Random changes of �ow topology in the 2D S-Navier-Stokes

Eq. (F. B., E. Simonnet and H. Morita)

Random transition in experiments (M.M., J.S., and F.B.)

3 Irreversible relaxation of the 2D Euler equations

Irreversibility in �uid mechanics

Nonlinear damping for the 2D Euler Eq. (F.B, and H.M.)

The Kolmogorov Flow
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Random transitions in real �ows
Random change of �ow topology (E.S., H.M. and F.B.)
Random transitions in experiments (M.M., J.S. and F.B.)

Experimental Applications

Using the equilibrium theory, we can predict the existence of

non-equilibrium phase transitions.

Or phase transitions governed by the domain geometry, the

topography, or the energy.

Prediction of �ow topology change in Quasi-Geostrophic and

Shallow Water dynamics (rotating tank experiments).
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Irreversible relaxation

Random transitions in real �ows
Random change of �ow topology (E.S., H.M. and F.B.)
Random transitions in experiments (M.M., J.S. and F.B.)

Bistability in rotating tank

The zonal (propagating) state
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Non-equilibrium

Irreversible relaxation

Random transitions in real �ows
Random change of �ow topology (E.S., H.M. and F.B.)
Random transitions in experiments (M.M., J.S. and F.B.)

Bistability in rotating tank

The blocked state
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Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Random transitions in real �ows
Random change of �ow topology (E.S., H.M. and F.B.)
Random transitions in experiments (M.M., J.S. and F.B.)

Bistability in rotating tank experiments
M. Mathur, J. Sommeria (LEGI)

Bistability (hysteresis) in rotating tank experiments

F. Bouchet CNRS�ENSL Phase transitions



Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Irreversibility
Nonlinear damping for the 2D Euler Eq. (F.B, and H.M.)
The Kolmogorov Flow

Outline

1 Statistical mechanics of ocean jets and vortices

Equilibrium statistical mechanics

Ocean rings (mesoscale eddies)

Strong mid-basin ocean jets

2 Non-equilibrium phase transitions

Experiments

Random changes of �ow topology in the 2D S-Navier-Stokes

Eq. (F. B., E. Simonnet and H. Morita)

Random transition in experiments (M.M., J.S., and F.B.)

3 Irreversible relaxation of the 2D Euler equations

Irreversibility in �uid mechanics

Nonlinear damping for the 2D Euler Eq. (F.B, and H.M.)

The Kolmogorov Flow

F. Bouchet CNRS�ENSL Phase transitions



Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Irreversibility
Nonlinear damping for the 2D Euler Eq. (F.B, and H.M.)
The Kolmogorov Flow

Irreversibility in Fluid Mechanics and in Turbulence
Do we need viscosity to explain irreversible behavior of turbulent �ows ?

In many �uid mechanics or turbulence textbooks, it is stated,

for example, that �Viscosity, whatever small, is necessary to

explain the irreversible behavior of turbulent �ows�.

Based on �D'Alembert's Paradox� (Euler and Lagrange

theorems) (about potential �ows) and Prandtl boundary layer

analysis.

The reversibility paradox of very small Reynolds number �ows.
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Irreversibility in Fluid Mechanics and in Turbulence
Do we need viscosity to explain irreversible behavior of turbulent �ows?

In many �uid mechanics or turbulence textbooks, it is stated,

for example, that �Viscosity, whatever small, is necessary to

explain the irreversible behavior of turbulent �ows�.

Such statements and explanations of irreversibility of turbulent

�ows are misleading. More precisely, they may be right in

some cases and they actually correctly describe some of

important processes, for instance for �uid described by the

Navier-Stokes equations, but they miss the point.

Irreversibility of turbulent �ows should be explained

independently of microscopic irreversible phenomena.

Today the case of 2D turbulent �ows and the irreversible

behavior of the 2D Euler equations
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The 2D Euler equations
Dynamics of small perturbations of a steady state

2D Euler equations

∂ω

∂ t
+v.∇ω = 0,

Hamiltonian and time reversible.

Base state: a steady state v0 = U (y)ex , with vorticity ω0:

v0.∇ω0 = 0.

The 2D Euler dynamics close to v0, ω = ω0(y) + ω ′ and
v = U (y)ex +v′

Irreversible behavior. Asymptotic behavior for large times.
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Nonlinear Landau damping
Clément Mouhot, and Cédric Villani, 2010

Vlasov equation (dynamics of electrons in a plasma). µ-space

density f (x ,p, t):

∂ f

∂ t
+p

∂ f

∂x
− dV

dx

∂ f

∂p
= 0.

Hamiltonian and time reversible. A transport equation by a

non-divergent �ow, like the 2D Euler equations.

Base state: a steady state f = f0 (p) . Understanding of the

linearized equation by Landau (1946)

Proof of the irreversible convergence, for large times, of f

(weak topology) and ρ (strong topology) towards

homogeneous densities (Mouhot, and Villani, 2010)
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The Linearized Euler Eq. close to Shear �ows

Base �ow : v0 (r) = U (y)ex . The linearized Euler equation :
∂ω ′

∂ t
+ ikU (y)ω

′−ikψU ′′ (y) = 0, (4)

with ω ′(x ,y , t) = ω ′ (y , t)exp(ikx) and ω ′ = d2ψ

dy2
−k2ψ .

Laplace transform : φ (y ,c ,ε) =
∫

∞

0
dtΨ(y , t)exp(ik(c + iε)t)(

d2

dy2
−k2

)
φ − U ′′(y)

U(y)− c− iε
φ =

ω ′ (y ,0)

ik (U(y)− c− iε)
(5)

This is the celebrated Rayleigh equation. A one century old

classical problem in �uid mechanics, applied mathematics and

mathematics. Rayleigh (1842-1919)

Large time asymptotic is related to the limit ε → 0

Singularity of the equation : critical layer U(yc) = c
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Asymptotic Behavior of the Linearized Euler Eq.
Base �ow with stationary streamlines: U ′(y0) = 0

Mathematical methods: Laplace transform and detailed

analysis of singularities due to the critical layers and stationary

streamlines.

By contrast with what was previously believed, we can deal

with the di�culty related to the stationary streamlines.

Theory: a) Asymptotic oscillatory vorticity �eld

ω
′ (y ,t) ∼

t→∞
ω∞ (y)exp(ikU(y)t) +O

(
1

tα

)
b) DEPLETION OF VORTICITY FLUCTUATIONS:

For any stationary streamline of the �ow (y0 such that U ′ (y0) = 0)

ω∞ (y0) = 0

+ Prediction of the asymptotic vorticity ω∞ (y).
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Non-Equilibrium Stationary States: Dipoles

Depletion of vorticity �uctuations in vortices
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Asymptotic Behavior of the Linearized Euler Eq.
Base �ow with stationary streamlines: the velocity �eld

Theorem: asymptotically algebraically decaying velocity �eld

vx(y , t) ∼
t→∞

vx ,∞ (y)

t
exp(−ikU(y)t)

vy (y , t) ∼
t→∞

vy ,∞ (y)

t2
exp(−ikU(y)t)

What about stationary streamlines? They should give

contributions of order 1/t1/2 !

No contribution from the stationary streamlines thanks to the

depletion of the vorticity perturbation at stationary

streamlines.

F. Bouchet CNRS�ENSL Phase transitions



Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Irreversibility
Nonlinear damping for the 2D Euler Eq. (F.B, and H.M.)
The Kolmogorov Flow

Asymptotic Behavior of the Linearized Euler Eq.
Base �ow with stationary streamlines: the velocity �eld

Theorem: asymptotically algebraically decaying velocity �eld

vx(y , t) ∼
t→∞

vx ,∞ (y)

t
exp(−ikU(y)t)

vy (y , t) ∼
t→∞

vy ,∞ (y)

t2
exp(−ikU(y)t)

What about stationary streamlines? They should give

contributions of order 1/t1/2 !

No contribution from the stationary streamlines thanks to the

depletion of the vorticity perturbation at stationary

streamlines.

F. Bouchet CNRS�ENSL Phase transitions



Ocean jets and vortices
Non-equilibrium

Irreversible relaxation

Irreversibility
Nonlinear damping for the 2D Euler Eq. (F.B, and H.M.)
The Kolmogorov Flow

Irreversible Relaxation of 2D Euler Eq.
Relaxation towards Young measures. Young measure entropy

Ω(x ,y ,0) = Ω0 (y) + εω (x ,y ,0). Then we can prove that, for the
2D linearized Euler eq.

Ω(x ,y ,0) ∼
t→∞

Ω0 (y) + εω∞ (x−U(y)t,y ,0) .

We de�ne the measure

ρ (σ ,y) =
1

T (y)

∫ T (y)

0

dtδ (σ − [Ω0 (y) + εω∞ (x−U(y)t,y ,0)])

Then (theorem for the linearized equation)

Ω(x ,y ,0) →
t→∞

Y [ρ (σ ,y)] ,

where Y [ρ] is the Young measure de�ned by ρ .

Conjecture: this also true for the 2D Euler eq. (nonlinear)

This could de�ne the notion of an entropy for the dynamical

solutions to the 2D Euler equations and its irreversible

evolution.
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An Example: the Kolmogorov Flow

U(y) = cos(y) in the doubly periodic domain (0,2π/δ )x (0,2π); δ

is the aspect ratio

Two stationary streamlines U ′(y0) = 0, for y0 = 0 or y0 = π

Usual criteria for stability (Rayleigh, Arnold) do not apply

The Kolmogorov �ow is stable for δ > 1 (Lyapounov stability),

spectrally and linearly stable (easily proved).

This �ow has no neutral modes.
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Asymptotic behavior of the 2D Euler Eq.
Base �ow with stationary streamlines: the velocity �eld

Evolution of the perturbation velocity, components vx(t) and vy (t),

advected by a constant shear �ow U(y) with stationary streamlines

The velocity perturbation converges to zero (asymptotic stability)

even without dissipation

F. Bouchet, and H. Morita, Physica D 2010,
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Asymptotic Behavior of the Euler Eq.: Conclusions

Asymptotically oscillating vorticity �elds

Algebraic decay of the velocity �eld with 1/t or 1/t2 laws,

whatever the cases (except at stationary streamlines).

All cases of base �ow with any type of shear have been treated.

Depletion of the vorticity perturbation at the stationary

streamlines

Axisymmetric vortices should behave the same way.
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Summary

Messages :

Ocean rings are statistical equilibria - Ocean strong mid basin
eastward jets are marginally unstable statistical equilibria

We predicted and observed non-equilibrium phase transitions

for the 2D-Stochastic Navier Stokes equations

We observed such non-equilibrium phase transition in

experiments

We predicted the long time asymptotics of the inviscid

damping of the 2D Euler equations
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