
What can Thermal Convection
Teach Us about the

Nature of Turbulence?

1. Homogeneous isotropic turbulence does

not provide transports, exhibits vanishing

correlations.

2. Simplest realistic turbulent systems are

homogeneous in two spatial dimensions

and in time. They are characterized by

finite correlations and by spontaneous co-

herent structures.

3. Thermal convection in extended hori-

zontal fluid layers has become a paradig-

matic example for the study of turbulence

because of several properties:

• It represents the simplest mechanism of

hydrodynamic instability.
• It permits high degrees of visualization

through scalar quantities such as tempe-

rature (shadowgraph, radiation etc.) or

suspended particles ( thermochromatic li-

quid crystals, condensed water in clouds

etc.).
• It is not subject to advection out of the

observational frame.

Friedrich Busse, Univ. Bayreuth KITP, Mar 30, 2011





3



4



5



6



7



Systems that are Homogeneous
in Two Spatial Dimensions

and in Time

There are two routes to complex fluid flow
with increasing control parameter such as Reynolds
number or Rayleigh number:

1. Random initial conditions lead to in-
creasingly turbulent flows which typically
exhibit spontaneous coherent structures.

2. Controlled initial conditions permit bi-
furcation sequences of spatially periodic,
possibly unstable solutions of the basic
Navier-Stokes equations. Some of these
solutions embody the characteristic pro-
perties of the coherent structures.

Nomenclature:

• Primary Solution or Basic State re-
flects all symmetries of external condi-
tions.

• Secondary Solutions generically assume
the form of “rolls“or “stripes“.

• Tertiary, Quaternary and Higher Or-
der Solutions exhibit large varieties of
patterns depending on the physics and
on the parameters of the system.
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Physical conditions are
homogeneous in two spatial
dimensions and in time t.

Secondary Solutions

Typical case : ,  Rmin  nondegenerateσi = 0
Linearized problem : ϕ0 ∞ exp { iq  x + σt }•

x
y

z

x
y

z

Physical conditions
are homogeneous in

and in time t.
two spatial dimensions

Lϕ - RBϕ = Nϕϕ + V       ϕ∂τ
∂Basic equation

Symmetry Properties
translation in time

∂τ
∂ ϕ = 0

translation in longit. direct.
∂x
∂ ϕ = 0

transverse periodicity 2π
αϕ(y+ ϕ(y, z), z) =

transverse reflection ϕ(-y, z) = ϕ(y, z)  or  a-mn = amn

inversion about roll axis π
αϕ( - y, z) = -ϕ(y, z)  or  amn = 0   for m+n = odd





 defining rolls

*

narrow gap approximation + nearly corotating cylinders in the case of Taylor vortices
requires Bussinesq approximation for Rayleigh-Bénard problem

*

Instabilities
of Rolls : Σ

m,n>0
eibx+idy+σtϕ = { ~ amnexp {imαy} fn(z) }~ 

Steady Rolls :
ϕ = Σ amnexp {imαy} fn(z) +...

m,n>0
α ≡  qc ,       fn(z) = (-1)n-1 fn(-z)
for symmetry about midplane
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Symmetries Broken by Bifurcations
from Steady Rolls

of Poisseuille flow

Küppers-Lortz-Inst.

presence of Couette flow
Wavy Inst. in the 

Wavy Inst. in presence 

basic  roll  symmetries

Analytical
properties

Eckhaus Inst.

translation
in time

longitud.
translation

transverse
reflection

inversion
about axis

transverse
periodicity

Symmetries
broken

amn = a-mn
~ ~b = 0 amn = 0~σi = 0 d = 0

Oscillatory Inst.
Blob Instab. E
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Mon. Skewed
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Varicose
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Osc. Skewed
Varicose

Other
Examples
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Conclusions

• Tertiary and higher order solutions of

bifurcation sequences describe dynamic

mechanisms that operate as coherent struc-

tures in turbulent systems.

• Controlled initial conditions permit the

realizations of spatially periodic higher or-

der solutions in computer simulations or

laboratory experiments. These solutions

may be unstable or their basins of at-

traction are so small that they have no

chance to be realized without controlled

conditions.

• Instantaneous two-dimensional visua-

lizations are best suited for identifying

coherent structures in turbulent systems.

• Similarities between structures of fully tur-

bulent systems and those of their laminar

equivalents at the laboratory scale lend

support to the concept of eddy diffusi-

vities.
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