VWwWhat can Thermal Convection
Teach Us about the
Nature of Turbulence?

1. Homogeneous isotropic turbulence does
not provide transports, exhibits vanishing
correlations.

2. Simplest realistic turbulent systems are
homogeneous in two spatial dimensions
and in time. They are characterized by
finite correlations and by spontaneous co-
herent structures.

3. Thermal convection in extended hori-
zontal fluid layers has become a paradig-
matic example for the study of turbulence
because of several properties:

e It represents the simplest mechanism of
hydrodynamic instability.

e It permits high degrees of visualization
through scalar quantities such as tempe-
rature (shadowgraph, radiation etc.) or
suspended particles ( thermochromatic li-
quid crystals, condensed water in clouds

etc.).
e It is not subject to advection out of the

observational frame.

Friedrich Busse, Univ. Bayreuth KITP, Mar 30, 2011
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Systems that are Homogeneous
iIn Two Spatial Dimensions
and in Time

There are two routes to complex fluid flow
with increasing control parameter such as Reynolds
number or Rayleigh number:

1. Random initial conditions lead to in-
creasingly turbulent flows which typically
exhibit spontaneous coherent structures.

2. Controlled initial conditions permit bi-
furcation sequences of spatially periodic,
possibly unstable solutions of the basic
Navier-Stokes equations. Some of these
solutions embody the characteristic pro-
perties of the coherent structures.

Nomenclature:

e Primary Solution or Basic State re-
flects all symmetries of external condi-

tions.
e Secondary Solutions generically assume

the form of “rolls*“or “stripes®.

e Tertiary, Quaternary and Higher Or-
der Solutions exhibit large varieties of
patterns depending on the physics and
on the parameters of the system.
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Rayleigh number

Energy gain: Lp = C1POW(T2—T1)9V-,;‘/%
k/d = thermal velocity

Dissipation: Lp = CopovyzV

For onset of convection: Lp > Lp

a Lp 2

3
Rayleigh number: R = 212 V?;l)gd

Prandtl number: P =~
| 11



Secondary Solutions

Physical conditions
are homogeneous in
two spatial dimensions

and in time t.

Basic equation Lo - RBg = Ngo + V ai

Linearized problem : @y o< exp { iq-X + ot }
Typical case: O;=0 , R, nondegenerate

Q= Zoamnexp {imay} f.(2) +...

Steady Rolls : &n’: q.., f(z) = (-1)1 f (-2)

for symmetry about midplane

Symmetry Properties

translation in time

translation in longit. direct. } defining rolls

transverse periodicity
transverse reflection

inversion about roll axis” (p(g -Y,2)=-0(y, z) or a,,=0 form+n=o0dd

* narrow gap approximation + nearly corotating cylinders in the case of Taylor vortices
requires Bussinesq approximation for Rayleigh-Bénard problem

Instabilities . N
=1 2 a_exp{imay}f(z) | ebxidysot
of Rolls : {m,n>0 P g } 12




Symmetries Broken by Bifurcations
from Steady Rolls

Analytical
properties

Symmetries
broken

Gi:‘:O

translation
in time

b+0

longitud.
translation

d+0

transverse
periodicity

amn 4: a-mn

transverse
reflection

amnzico

inversion
about axis

Other
Examples

Eckhaus Inst.

x

Cross roll Inst.
Knot Inst.

Oscillatory Inst.

Wavy Inst. in presence
of Poisseuille flow

Blob Instab. E

Blob Instab. O

Mon. Skewed
Varicose

Klppers-Lortz-Inst.

Osc. Skewed
Varicose

Zig-Zag Inst.

®

basic roll symmetries

Wavy Inst. int

presence of Couettedlow
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- Tertia

| steady state or 0= 2 amqexp {ilox+imayy} fy(2)
- ,m,n
travelling wave with a. ., = s X—X = X-Ct,

for travelling wave

| - S;ym',r‘-' vries of twice , ,\aﬁaéi,_ Vperiodic flows
Examples~ _ reflection symmetries | inversion symmetry

bimodal convection
Knot convection

= 0 for l+m+n = odd

aq_:m;i: = 8ymn = Amn. Bimn

travelling blob . , ,
| i | ' -mn = ‘ =0 for l+m+n =
convection | Aon = B ymn = 0 for l+m oqd

wavy rolls | . e
wavy Taylor vortices 8ymn = 1)»val~mn = (-1)m* &

_stability analysis with res;éct- to
arbitrary infinitesimal disturbances

¢ = exp {ibx+idy+ot} 2 a,.exp {ilox+ima,y} f.(2)
l,m,n y

Quarternary Solutions

time periodic or
steady state

9= 2 apm(t) exp {ilax+imoyy} fr(2)

ry knot convection,




Steady Knot Convection
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Nusselt number at P=7
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Oscillatory bimodal convection
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Wavy oscillatory bimodal convection
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Conucction (n A(’r (P=0.7)
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Conclusions

e Tertiary and higher order solutions of
bifurcation sequences describe dynamic
mechanisms that operate as coherent struc-
tures in turbulent systems.

e Controlled initial conditions permit the
realizations of spatially periodic higher or-
der solutions in computer simulations or
laboratory experiments. These solutions
may be unstable or their basins of at-
traction are so small that they have no
chance to be realized without controlled
conditions.

e Instantaneous two-dimensional visua-
lizations are best suited for identifying
coherent structures in turbulent systems.

e Similarities between structures of fully tur
bulent systems and those of their laminar
equivalents at the laboratory scale lend
support to the concept of eddy diffusi-
vities.
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