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Summary. It is argued that, to directly target the mean fluxes through a structured
medium with spatial correlations over a significant range of scales that includes the
mean-free-path, one can use an effective propagation kernel that will necessarily be
sub-exponential. We come to this conclusion using both standard transport theory
for variable media and a point-process approach developed recently by A. Kostinski.
The ramifications of this finding for multiple scattering and effective medium theory
are examined. Finally, we describe a novel one-dimensional transport theory with
asymptotically power-law propagation kernels and use it to shed new light onto
recent observations of solar photon pathlength in the Earth’s cloudy atmosphere.

1 Introduction and Overview

We start with a compact (operator-based) formulation of the monokinetic linear
transport problem in higher-dimensions of sufficient generality for our present needs.
Phase-space density (times velocity c), denoted I(x,Ω), is called “specific intensity”
or “radiance” in the parlance of radiative transfer (RT) theory. It is determined by
a one-group linear Boltzman equation [1]

LI = SI + Q (1)

where
L = Ω •∇ + σ(x) (2)

describes the advection and extinction of particle beams while

S = σs(x)

∫

4π

p(x,Ω′ → Ω)[·]dΩ′ (3)

describes the volume scattering process, and Q(x,Ω) is the volume source term. We
will call this the “3D RT equation” (here, in its integro-differential incarnation).
We also need boundary conditions (BCs) which can often be taken as vacuum (no
incoming radiance) or reflective (which is just like scattering but at a surface).
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Most numerical solutions of this problem use, in one way or another, the equiv-
alent integral equation

I = KI + I0 (4)

that naturally incorporates the BCs; here

K = L−1S (5)

is the transport kernel while
I0 = L−1Q (6)

represents the uncollided particles. The integral operator L−1 is the main focus of
this paper; we will call it the propagation kernel. Formally, one can write the solution
of (4) as

I =
I0

1 −K
=

∞
∑

n=0

KnI0, (7)

the well-known Neumann series.
In this paper however, we are not interested in a solutions of fully specified

(deterministic) 3D RT problems. Rather, we are interested in the mean and other
statistical properties of solutions averaged over many realizations of the spatial vari-
ability: “mean-field” RT theory where the parameters of interest are also means,
variances, covariances, correlation functions, and so on, evaluated for the optical
properties of the media. Typically, assumptions are made in such a way that these
ensemble averages at a point will be invariant under a relevant class of translations
and rotations: statistical homogeneity and isotropy prevails. These point transfor-
mations need not be fully 3D; for instance, they can be only in the horizontal plane.
So what we call here a mean-field RT solution is often thought of as a model for
large-scale averages in the statistically invariant spatial dimensions.

The most venerable approach to this challenging problem was pioneered1 by the
regretted transport theoretician extraordinaire G. C. Pomraning (1936–1999) along
with his students and coworkers. The interested reader is referred to his definitive
text Linear Kinetic Theory and Particle Transport in Stochastic Mixtures [3]. In
this framework, tractable problems with scattering are limited to Markovian binary
media: two types of material and uniform probabilities of crossing a boundary per
unit of length along any beam. There are only two structural parameters: the volume
mixing ratio and the characteristic scale of the clumps of the less abundant material.
One ends up here with the likes of two integro-differential equations for uniform
media to solve simultaneously because they are coupled by linear exchange terms.

Other statistical RT models, inspired by the phenomenology of turbulence, have
been based on scale-wise expansions (as in Fourier space) and closure methods, e.g.,
Stephens [4]. Yet other methods simply prescribe averaging over solutions of homo-
geneous problems using 1-point statistics and thus foregoing any impact of spatial
correlations, e.g., Barker [5]. For further examples in atmospheric science, primarily
motivated by large-scale radiation budget considerations in climate studies, see the
recent survey by Barker and Davis [6].

A very desirable outcome of a statistical RT model from any of the above ap-
proaches is “homogenization:” compute effective optical medium properties that can

1 This is on the US side of the Cold War. In the former USSR, parallel developments
happened starting, as far as I know, with Avaste and Vainikko’s [2] investigation
of broken clouds and continue to this day.
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be applied to a homogeneous RT problem, but that somehow to capture the effects
of the unresolved variability. For instance, Graziani and Slone [7] seek an effective
mean free path dependent on structural parameters of Markovian and other media
in order to treat them with a single RT equation. An example in cloud radiation
is Cahalan’s [8] rescaled optical depth model which is based on straightforward 1-
point/single-variable averaging of solutions of the standard 1D RT problem when
cloud optical depth is positively skewed (e.g., lognormal-like). Another notable ex-
ample in atmospheric science is Cairns et al.’s [9] renormalization of all local optical
properties which is grounded in a sophisticated Green function analysis.2 of the
3D RT problem and also adapts powerful techniques from contemporary statistical
physics.

A common trait of the above methods that care at all about covariances [4] or
spatial correlations [10, 9, 11] is the (often implicit) requirement that the variability
scales and the averaging scales be well-separated. In cloudy atmospheres however,
and probably also in many other structured media dominated by turbulent reactive
flows, spatial correlations are “long-range” (typically power-law wavenumber spectra
are observed). It is therefore not obvious that we can observe scales where the
statistics can be deemed homogeneous and that one can really talk about variability
confined to a certain range of scales.

Although Cairns et al. [9] correctly averages the iterated transport kernel Kn

in (7) with the spatial (L−1) and angular (S) aspects inherently intertwined in
(L−1S)n, the remainder of this paper is essentially an attempt at treating them
separately and relating this approximation to the general idea of diffusion. There
is little theoretical justification for this separation beyond connection with Lévy
walks, a popular model in both statistical physics [12] and in stochastic processes
[13]. Nonetheless, recent observations of multiply scattered sunlight in the Earth’s
cloudy atmosphere [14, 15] support this approximation that we revisit further on.

In the following Section, we revisit the basic physics of extinction (i.e., σ) and
scattering (i.e., σsp(Ω′ → Ω)), introducing some useful notation in the process. We
then examine in Sect. 3 the general properties of averaged free-path distributions in
random but spatially-correlated 3D media as determined by 〈L−1〉 where the angular
brackets denote ensemble/spatial averages; we do this from two different standpoints,
RT theory and point processes. This enables us to state a fundamental limitation
of effective medium theory that may or may not impact practical implementations.
We also look at the form of 〈L−1〉 for the specific kind of variability observed in the
Earth’s cloudy atmosphere. In Sect. 4, we return to multiple scattering transport by
first showing, under quite general conditions, that angular diffusion makes iterates
of S very close to projections onto the space of isotropic functions U(x) —physically,
photon density— in finite time; it is then relatively easy to obtain the asymptotic
behavior of Kn ≈ 〈L−1〉n for both infinite and finite media, assuming complete
angular redistribution. In Sect. 5, we display some recently published absorption-
based diagnostics of solar photon transport through real 3D clouds and propose a
simple 1D RT model based on the relevant family of propagation kernels 〈L−1〉 that
explains these observations. We offer some concluding remarks in Sect. 6.

I have already started and will continue to use the language of radiative trans-
fer (photons, extinction, optics, etc.), and furthermore in the frame of atmospheric

2 Uses the solutions G of (1) when Q is a roaming Dirac δ source; formally, we have
G = (L−S )−1.
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science. Much of the following is nonetheless applicable to neutron or neutrino trans-
port in engineering or astrophysical systems.

2 Extinction and Scattering Revisited,
and Some Notations Introduced

2.1 The Extinction Coefficient

The simplest description of matter-radiation interaction is photon depletion when a
narrow collimated beam crosses an optical medium, cf. left-hand side of Fig. 1 where
it is assumed that δI ≥ 0. We have basically expressed here the flux-divergence the-
orem for an “elementary” kinetic volume of length δ#. Along the horizontal cylinder
the net transport is 0; to the left, there is an in-flux I; to the right, an out-flux I−δI.
So the divergence integral is simply the difference from left to right. Operationally,
we have

δI ∝ I × δ# (8)

and the proportionality constant, defined as

σ = lim
δ#→0

δI/I
δ#

... in m−1, (9)

is the extinction coefficient or simply “extinction.”
What is the detailed mechanism of extinction? This is about a population of

streaming photons colliding with an essentially static population of massive particles.
So all we have to do is estimate the number of particles in the sample volume in
Fig. 1: δN = nδAδ#. Multiplying this by the (mean) cross-section s and dividing by
δA yields the element of probability for an interaction which, by definition (9), is
σδ#, and should be *1. Thus, as some position (x), we have

σ(x) = n(x) × s. (10)

In this sense, extinction is the interaction cross-section per unit of volume, equiva-
lently, the probability of collision per unit of length. Note that the medium as to be
sufficiently dilute (n−1/3 + s1/2); otherwise (tightly-packed particles), it is wrong
to think that a small distance δ# in sn× δ# makes it a small element of probability.

In (10), the cross-section s is for any kind of interaction by any kind of particle.
In radiative transfer, it is naturally partitioned between absorption (photon destruc-
tion) and scattering (photon re-direction).3 This partition carries over immediately
to the transport coefficients:

σ(x) = σa(x) + σs(x). (11)

3 In neutronics, there is a third elementary process: multiplication, which is ba-
sically an “anti-absorption;” formally, we model this process with σa < 0 (an
isotropic source of particles that is ∝ I). In optics, there is stimulated emission
which can dominate in NTLE situations, such as in laser cavities. Because of the
tight correlation between the incoming and outgoing photon’s directions, this is
best modeled as a negative extinction in (9).
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In environmental and astrophysical applications, there is often a mixture of optically
relevant material particles in the kinetic volume in terms of size (cf. right-hand side
of Fig. 1), shape, chemistry, etc. An important quantity in the following is single-
scattering albedo:

$0(x) = σs(x)/σ(x). (12)

We can then express the absorption coefficient as

σa(x) = [1 − $0(x)] σ(x), (13)

where 1 − $0(x) is sometimes called the “co-albedo” for single scattering.

Fig. 1. Mechanism of optical extinction by a dilute medium of scattering/absorbing
particles: (a) elementary cylindrical volume, (b) photon beam’s view down the axis
of the cylinder when a variety of cloud droplet sizes are present. Adapted from Fig.
3.7 in [16]

As long as the overarching condition of weak dilution is verified, we can use
the linearity of (10)–(11) to simply sum the cross-sections s(s) and s(a) (for scatter-
ing and absorption respectively) of different types of photon-intercepting particles
weighted by the associated densities:

σa,s(x) =
∑

species i

s
(a,s)
i × ni(x). (14)

A variation of this principle is when the “species” are defined by a continuously
varying parameter such as size r:

σa,s(x) =

∞
∫

0

s
(a,s)(r) × dn

dr
(r; x) dr. (15)

For spherical particles (such as cloud droplets) of radius r, Mie scattering the-
ory specifies the efficiency factor Q(a,s)(2πr/λ) that appears in s(a,s)(r) = πr2 ×
Q(a,s)(2πr/λ) where λ is the given wavelength, cf. Deirmendjian [17] for standard
size spectra dn/dr used in atmospheric optics.

Interesting questions arise when a particle type or size can not be considered
uniformly distributed at any scale, i.e., that it is impossible to define a density ni(x)
or dn/dr(r; x). I refer to Knyazikhin et al. [18] for an investigation of more general
formulations of the extinction problem that capture this case. In the next section,
we will proceed to investigate spatial variability effects under the weak assumption
that at least the dominant types of particles have well-defined local densities.
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2.2 The Scattering Phase Function

Figure 2 illustrates the redistribution of radiant energy between different beams
through scattering. Our goal is to estimate the element of scattered flux δFs. It is
surely proportional to the small solid angle into which the scattering occurs δΩ and
to the small loss of flux δF0 incurred when the incoming photons cross the sample
volume (conditional to scattering rather than absorption); the latter term is equal
to the scattering coefficient times the small length δ#. In summary, we have

δFs ∝ δF0δΩ = F0σsδ# × δΩ. (16)

We define the scattering phase function as

p(Ω0 → Ω) = lim
δ#,δΩ→0

δFs

δF0 × δΩ
... in sr−1 (17)

which will generally depend on position x as well as one or two angular variables: the
scattering angle θs = cos−1(Ω0 •Ω) and, possibly, an azimuthal scattering angle as
well. As an example that we will return to latter on, consider everywhere isotropic
scattering:

p(x,Ω0 → Ω) ≡ 1/4π. (18)

Fig. 2. Schematic of scattered radiance. Adapted from Fig. 3.8 in [16]

As for extinction, let us have a closer look at the mechanics of scattering at the
individual collision level.4 To isolate the inherent property of the scattering medium,
we compute

4 In the context of RT, it is technically incorrect to think of a photon as being
scattered since its identity, as an eigen-mode of the quantized EM equations, is
defined in particular by its direction of propagation. However, a quantum hc/λ
of radiant energy is transfered between modes at each elastic scattering, and I
will continue the tradition of calling this the scattering of “a photon.” In RT
per se, “photon” is in fact short for photon beam since we are in the classic
limit of geometric optics where all distances of interest are much larger than the
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lim
δs,δΩ→0

δFs/F0

δs × δΩ
= σs(x)p(x,Ω0 → Ω) = n(x) × ds

dΩ
(x,Ω0 → Ω) (19)

where the last expression is obtained by straightforward generalization of (10) to
differential cross-sections. As for extinction in (15), differential cross-section should
be averaged over the population of particles in the sample volume in terms of size
and/or type.

By radiant energy conservation, we have
∫

4π

p(x,Ω0 → Ω)dΩ ≡ 1, ∀x,Ω. (20)

By optical reciprocity, we have p(x,Ω → Ω0) = p(x,Ω0 → Ω), hence
∫

4π

p(x,Ω0 → Ω)dΩ0 ≡ 1, ∀x,Ω0. (21)

In the remainder of this section, I will assume the spatial variability the phase
function is implicit, and drop x from its arguments.

In most atmospheric applications (high-altitude cirrus clouds made of ice-crystals
being the notable exception), it is reasonable to assume that scattering is axi-
symmetric around the incoming beam. Hence,

p(Ω0 → Ω) ≡ p(Ω0 • Ω) = p(µs). (22)

where the scattering angle θs is given by µs = cos θs = Ω0 • Ω.
This enables an expansion of the phase function in spherical harmonics (eigen-

functions of S) without the complication of azimuthal terms:

p(µs) =
1
4π

∑

n≥0

(2n + 1)ηnPn(µs), (23)

where Pn(x) is th nth-order Legendre polynomial. These coefficients are computed
from

ηn = 2π

+1
∫

−1

Pn(µs)p(µs)dµs. (24)

Specific values of the Legendre polynomials can be obtained efficiently by recursion
but their analytical expressions are best derived from the generating function [19]

Φ(x, z) =
∑

n≥0

Pn(x)zn =
1√

1 − 2xz + z2
, (25)

for |x| and |z| < 1. Using

wavelength λ. Physical (wave-theoretical) optics are required only to compute
transport coefficients at the individual cross-section level, which can indeed be
on the order of the wavelength squared. The weak dilution requirement and the
usual assumption of uncorrelated random positions then ensures that we can add
intensities (energies) rather than amplitudes and phases to model the behavior
of photon beams.
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Pn(x) =
1
n!

(

∂
∂z

)n

Φ(x, z)

∣

∣

∣

∣

z=0

, (26)

we find P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2, and so on. The orthogonality of
the Legendre polynomials,

+1
∫

−1

Pn(x)Pn′(x)dx =
δnn′

n + 1/2
, (27)

where δnn′ is the Kronecker symbol, ensures diagonalization of the scattering oper-
ator S in spherical-harmonic space. It is therefore little surprise that virtually all
grid-based (non-Monte Carlo) numerical solutions of the 3D RT equation exploit
spherical harmonics.

We have η0 = 1 by conservation for any phase function, and the only non-
vanishing coefficient for isotropic scattering in (18). Also of considerable interest
is

g = η1 = 2π

+1
∫

−1

µsp(µs)dµs, (28)

called the “asymmetry factor” or simply the mean cosine of the scattering angle. This
last description of g correctly presents the phase function as a probability density
function (PDF) in direction space, and this is indeed how p(µs) is used in Monte
Carlo schemes. Any deviation of the phase function from isotropy corresponds to a
directional correlation (in principle, of either sign) between incident and scattered
photons.

I will be introducing several kinds of averages in upcoming section. So those
that concern photon scattering and propagation events deserve a special notation,
which I borrow from the probability literature: E(·) which stands for (mathemati-
cal) expectation of the random variable in the argument. Thus, we can recast the
asymmetry factor in (28) as

g = E(Ω • Ω0) =

∫

4π

Ω • Ω0dP (Ω|Ω0) (29)

where dP (Ω|Ω0) = p(Ω0 •Ω)dΩ. The “|” delimiter in a PDF separates the random
variable from the given (fixed) quantities that need to be highlighted.

2.3 Henyey–Greenstein Models for the Phase Function

A very popular 1-parameter model for the single-scattering process in atmospheric
optics and elsewhere is the Henyey–Greenstein [20] phase function

p(µs; g) =

(

1
4π

)

1 − g2

(1 + g2 − 2gµs)3/2
. (30)

I will use the delimiter “;” to separate, as needed, variables from parameters in
argument lists. I will also use subscripts, e.g., pg(µs) in this case.

In spherical harmonics, the Henyey–Greenstein model (30) yields
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ηn(g) = gn. (31)

Indeed, 4πp(x; z) is identical to
∑∞

n=0(2n+1)Pn(x)zn = 2∂Φ(x, z)/∂z +Φ(x, z) from
(25); the above coefficients then follow by comparison with (23). This Legendre de-
composition is used in virtually all numerical implementations of the scattering
operator S, except Monte Carlo (random quadrature) schemes where the simula-
tion of the Markov chain requires the generation of random values of µs with the
probability measure implicit in (30). In the case of the Henyey–Greenstein phase
function, one can use the method of inverting the cumulative probability because
the running integral of (30) with respect to µs has a simple expression. Specifically,
one can generate random values of µs with

µs =
1
2g

(

1 + g2 −
[

1 − g2

1 + g(1 − 2ξ)

])

, |g| ≤ 1, g 0= 0, (32)

where ξ is a (pseudo-)random deviate uniformly distributed on the interval (0,1).
When g → 0, L’Hôpital’s rule in (32) yields the expected result for isotropic scat-
tering: µs = 1 − 2ξ. The azimuthal scattering angle is selected randomly: φs = 2πξ.

Sometimes, it is useful to compute RT in reduced dimensionality. For instance,
“3D” RT effects have been successfully investigated in 2D: one direction for the
mean flux (z) and one other, at right angles, for the spatial variability (x). It is
not necessary in this case to propagate photons in the 3rd dimension and the gen-
eral representation for radiance is I(x, z,θ ), where θ is still measured away from
the z-axis. The small price to pay for this conceptual simplification is that all the
geometrical units used so far must be adjusted:

• fluxes are now in s−1m−1;
• radiances are fluxes/rad since solid angles and direction (θ,φ ) are now reduced

to regular angles and just θ;
• extinction, scattering and absorption coefficients are still in m−1 but, if needed,

“cross-sections” are in meters while densities are in m−2; and finally,
• phase functions are in rad−1.

To support studies in this kind of RT in “Flatland,” Davis et al. [21] proposed a 2D
version of the Henyey–Greenstein phase function:

p(µs; g) = lim
δτs,δθ→0

δFs/F0

δτs × δθ
=

(

1
2π

)

1 − g2

1 + g2 − 2gµs
(33)

where τs is the element of (scattering) optical distance across the small 2D “volume”
where the scattering occurs (think of a 2D version of Fig. 2). Note that the polar
diagram of this 2D phase function, as a function of θs = cos−1 µs, is an ellipse of
eccentricity 2g/(1+g2) with the scattering particle at a focus. The asymmetry factor
g retains the same meaning in 2D it was given in 3D through (29): mean cosine of
the scattering angle.

The 2D analog of the spherical harmonic decomposition (23)–(24) on the 3D
unit sphere Ξ is a cosine Fourier series analysis on the interval (−π, +π] where θs

takes its values. Specifically,

p(µs) =
1
π

∑

n≥0

ηn

1 + δ0n
cos nθs (34)
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where

ηn =

+π
∫

−π

p(θs) cos nθsdθs. (35)

For the 2D Henyey–Greenstein phase function in (33), it can be shown that the nth
Fourier coefficient in (35) is ηn(g) = gn, just as in (31) for the 3D case. While this
is useful in a numerical implementation of S in 2D for a spatially-gridded represen-
tation of the 2D radiance, a 2D Monte Carlo scheme would use

θs = 2 tan−1

(

1 − g
1 + g

tan
[π
2

(1 − 2ξ)
]

)

, |g| ≤ 1, (36)

in lieu of (32).
The ultimate dimensionality reduction in RT is when the light particles can

travel only on one axis, say, up or down. Here, fluxes (and/or radiances) are simply
in s−1, the extinction coefficient (like density) is in m−1 while cross-sections and
the phase-function are dimensionless. Indeed, scattering in 1D amounts to either no
change of direction of travel (µs = +1) or reversed direction (µs = −1). In this case,
the angular PDFs in (30) or (33) are reduced to a Bernoulli trial:

p(µs; g) = lim
δτs→0

δFs/F0

δτs
=

{

µs = +1, with probability (1 + g)/2
µs = −1, with probability (1 − g)/2

. (37)

In other words,
p(±1; g) = (1 ± g)/2. (38)

This is in fact the most general phase function in 1D. As in higher dimensions, g is
still the mean of µs, the cosine of the scattering angle, even though it can take only
2 values.

RT in 1D is of course not a framework for investigating 3D effects. 1D RT is
however an analytically tractable benchmark, at least when $0 and g are constant
in the 1D medium.5 In this model, the two 1D “radiances” are readily identified
with 3D hemispherical fluxes in the upper- and lower halves (Ξ±) of Ξ. It dates
back at least to Schuster’s seminal 1905 paper [22]. 1D RT has undeniable tutorial
value. Amazingly, it is still used in many global climate models in one or another of
its evolved but mathematically equivalent forms [23].

3 Propagation

3.1 Direct Transmission in 3D Media as a Problem in Stochastic
ODEs

There is an apparently elementary calculus problem posed in (9), namely,

5 In 1D, 2D or 3D, the extremal values of g, +1 and −1 are only of academic
interest. They indeed lead to Dirac δ-functions in the respective scattering-
angle spaces: (µs, φs) ∈ Ξ, θs ∈ (−π, +π], µs ∈{− 1, +1}. For g = +1 scat-
tering per se is defeated and the RT problem collapses onto the pure extinc-
tion/absorption/emission problem, which is 1D (beam-by-beam). For g = −1,
we obtain a somewhat pathological 1D (beam-by-beam) transport model where
propagation direction is switched at every scattering event.
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dI/I = d ln I = −σ(x)ds, (39)

which is easily solved by a change of variables dτ(s) = σ(x)ds. We thus define optical
distance as the running integral of σ along the beam Ω0 from some starting point
x0:

τ(x0 → x = x0 + Ω0s) = τ(s; x0,Ω0) =

s
∫

0

σ(x0 + Ω0s
′)ds′. (40)

To address the problem of cumulative extinction, we will consider (x0,Ω0) to be
fixed parameters. The solution of the ordinary differential equation (ODE) in (39)
is therefore

I(s; x0,Ω0) = I(0; x0,Ω0) exp[−τ(s; x0,Ω0)]. (41)

This is the well-known exponential law of direct transmission with respect to optical
distance.

Consider a uniform medium where optical distance is simply

τ(x0 → x = x0 + Ω0s) = σs, ∀x0,Ω0; (42)

thus
I(s) = I0 exp(−σs). (43)

This is Beer’s law of exponential transmission with respect to physical distance. It
is obviously of more limited applicability than (41).

Looking back at (39) and thinking of σ(s; x0,Ω0) = σ(x0 + Ω0s) as a random
variable, we see that this is a problem in stochastic ODEs with multiplicative noise.
The relevant questions in stochastic ODE theory are about the statistical properties
of the solutions, in this case of exp[−τ(s; x0,Ω0)]. Given that we will be interested
in situations where the “noise” σ(s; x0,Ω0) has non-trivial correlation properties,
we can not draw on the classic treatments [24].

First however, we examine the transport theoretical significance of the direct
transmission law as a means of predicting the specifics of particle beam propagation.

3.2 Photon Free-Path Distributions

I have presented scattering as a random choice of new direction of propagation for
the photon. There is also an inherent randomness in photon propagation which
deserves to be re-examined from a probabilistic perspective.

From (41), but dropping the “0” subscripts for simplicity, we can derive direct
transmission

Tdir(s; x,Ω) = exp[−τ(s; x,Ω)] = Pr{step ≥ s|x,Ω} (44)

by taking the ratio Iout/Iin = I(s; · · ·)/I(0; · · ·). This is the probability of a photon to
not suffer any kind of collision in an experiment over the fixed distance s, starting at
x in direction Ω. Now think of the photon’s free path or “step” to its next collision.
As expressed above, Tdir(s; x,Ω) is the probability that this random variable exceeds
s. So, thinking now of s as the random step length, its PDF is defined by

p(s|x,Ω)ds = dP (s|x,Ω) = Pr{s ≤ step < s + ds|x,Ω}. (45)

In terms of the 3D variability of the optical medium, this leads to
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p(s|x,Ω) =

(

d
ds

)

P (s|x,Ω) = σ(x + Ωs) exp[−τ(s; x,Ω)], (46)

using (40) and (44).
Consider the case of uniform extinction σ, the only quantity required in the

problem at hand. The resulting free-path distribution (FPD) is given by

p(s|σ) = σe−σs (47)

follows directly from above, or using Beer’s exponential law of direct transmission
in (43).

The cumulative extinction (optical distance) computation in (40) and of direct
transmission in (44) is executed repetitively in many numerical solutions of the RT
equation, and the Monte Carlo technique is no exception. In uniform media, the
method of inverse cumulative probability follows directly from (47): the random
length s > 0 of the step between two successive scattering events is given by

s = − ln ξ/σ. (48)

In 3D media, one draws randomly an optical distance to cover τ = − ln ξ > 0 and
then one solves iteratively the equation in (40) for s.

The power of the differential formulation in (39) is that the collision accounting
is always done in the “safe” regime where interaction probability is small. Then,
conditional to survival, the collision probability is again assessed, and so on. The
resulting exponential free-path distribution therefore follows directly from the in-
herent “lack-of-memory” in the course of the beam propagation. This is called a
Markov property in probability theory.

There is in fact another even more tutorial way of deriving the above FPDs
(PDFs for s) by returning to the basic definition of extinction in (9) and exploiting
the photon’s lack of memory about its past: whether it collides or not with a particle
in the next instant does not depend on how far it has been traveling. So we can
mentally divide s into M + 1 small segments of equal length and consider the
probability of a photon crossing all of them without colliding with a particle. Since
the collision probabilities δI/I ≈ σδs where δs = 1/M are independent in each
sub-segment, the cumulative survival probability is by definition

Tdir(σs) ≈ (1 − σs/M)M . (49)

Taking the limit M → ∞ leads back to (41), hence to the FPD in (47). This proof,
used in textbooks such as [25], easily generalizes to the case where σ varies along
the beam’s path, leading back to (40)–(41) hence to the FPD in (46).

3.3 Mean-Free-Path and Other Moments

A fundamental quantity in transport theory, for light quanta or any other type of
particle, is the mean free path (MFP) given by

#(x,Ω) = E(s|x,Ω) =

∞
∫

0

sdP (s|x,Ω). (50)

Other moments of the FPD are also of general interest:
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E(sq|x,Ω) =

∞
∫

0

sqdP (s|x,Ω). (51)

Reconsider the uniform-σ case in (47). We find

#(σ) = E(s) = 1/σ. (52)

So the optical distance given in (42), τ = σs, is just physical distance s in units
of MFPs. Free-path moments of arbitrary order q > −1 can be computed from the
exponential distribution in (47) and we find

E(sq) = Γ (q + 1)/σq = Γ (q + 1)#(σ)q (53)

where Γ (·) is Euler’s Gamma function:

Γ (x) =

∞
∫

0

tx−1e−tdt. (54)

Recall that, for integer-valued arguments, Γ (n + 1) = n!, n ∈ N. In particular, the
root-mean-square (RMS) free-path is given by

√

E(s2) =
√

2/σ =
√

2 E(s). (55)

It is larger than the MFP in (52), as required by Schwartz’s inequality.
Schwartz’s well-known inequality is equivalent in probability theory to the state-

ment that variance,

D(s) = E([s − E(s)]2) = E(s2) − E(s)2, (56)

is non-negative. Jensen’s inequality in probability theory is less known in general.
It is usually stated as

E [f(X)] ≥ f [E(X)] (57)

for any random variable X on the support of f and for any convex function f (i.e.,
f ′′ > 0 if f is everywhere twice differentiable on the support of the PDF of X). The
“=” in (57) is obtained only in two situations:

1. f is linear in X;
2. X is sure (its variance is zero).

Schwartz’s inequality is a special case of Jensen’s with f(X) = X2 being a convex
function on the real axis R. Jensen’s inequality, or its converse for concave functions,
will be repeatedly invoked further on.

3.4 Enhanced, Non-Exponential Steps in Spatially Correlated
Media

I’ll demonstrate here that, in media with variable extinction, the MFP is always
larger than in a uniform medium associated with the mean extinction, equivalently,
with the same overall number of particles according to (10). I’ll also show that the
effective FPD is always wider-than-exponential, even if the actual MFP is used. De-
tailed proofs are provided by Kostinski [26] and Davis and Marshak [27], respectively
from the standpoints of non-Poissonian point processes and variable extinction fields.
The importance of spatial correlations in the extinction field σ(x) is emphasized in
both studies, and echoed here.
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Non-Uniform Extinction Field Approach

Let M ⊆ R
3 denote the 3D optical medium of interest. Using shorthand from prob-

ability theory, we define

Pr(dσ) = Pr{x ∈ M : σ ≤ extinction at x < σ + dσ} (58)

for the 1-point variability of the extinction coefficient. Technically, the bracketed
entity is a sub-set of M. In the random field theory used here, we will not need to
distinguish “probability” per se from the normalized measure of the set (in the sense
of Lebesgue) where the values of interest occur.

In a uniform medium of extinction σ0,

Pr(dσ) = δ(σ − σ0)dσ. (59)

As a simple example of a variable medium, take a Bernoulli (binary-value) random
extinction

Pr(dσ) = [f1δ(σ − σ1) + f2δ(σ − σ2)]dσ, f1 + f2 = 1. (60)

We will however usually be dealing with continuous distributions of σ, hence the
differential notation.

“Ensemble” averages over this “disorder” in the optical medium will be denoted
by angular brackets, 〈·〉; so, for instance, we have

〈σq〉 =

∞
∫

0

σq Pr(dσ). (61)

Statistical quantities of interest in photon transport are the ensemble-averaged mo-
ments of the (random) FPD, equivalently, the moments of the ensemble-average
FPD

〈p(s)〉 = 〈dP (s)〉/ds. (62)

Specifically, we may want

〈E(sq)〉 =

∞
∫

0

sq〈dP (s)〉 (63)

where

〈dP (s)〉/ds =

∞
∫

0

p(s|σ) Pr(dσ) =

∞
∫

0

σ exp[−σs] Pr(dσ). (64)

So (63) is actually a double integral on probability measures: first on the spatial
disorder, then on the propagation (as written above), or vice-versa.

Thinking of
τ(s) = σs (65)

when extinction σ is random and distance s fixed, we are interested in the statistical
properties of the mean direct transmission law

〈e−τ(s)〉 =

∞
∫

0

Tdir(s|σ) Pr(dσ) =

∞
∫

0

exp[−σs] Pr(dσ). (66)
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In short, how does it differ from e−〈τ(s)〉 = e−〈σ〉s? From (66), we recover the mean
FPD in (64):

〈dP (s)〉 =

∣

∣

∣

∣

d
ds

〈e−τ(s)〉
∣

∣

∣

∣

ds. (67)

Three general results can be derived about the mean or “effective” FPD in (64) or
(66)–(67).

1. It is exponential only if the medium is homogeneous, a consequence of Jensen’s
inequality for f(X) = e−X . This is the converse of the result derived in (43),
thus making exactly exponential transmission and homogeneity equivalent state-
ments about an optical medium:

σ(x) ≡ constant ⇐⇒
∣

∣

∣

∣

d
ds

Tdir

∣

∣

∣

∣

∝ Tdir. (68)

An important corollary here is that effective medium (or homogenization) theory
is of limited value as an approach for 3D RT in the presence of unresolved
spatial variability. It is probably wise to customize the effective parameters of
the uniform medium to deliver on some important aspect of the problem at
hand, rather than to think of it as a truly “equivalent” medium.

2. The mean MFP is always larger than in the hypothetical homogeneous medium
with an extinction equal to the mean extinction; considering (10), we are thus
putting a number/mass-conservation constraint on the variability. This trans-
lates to

〈#〉 = 〈E(s)〉 = 〈1/σ〉 ≥ 1/〈σ〉. (69)

The inequality follows from Jensen’s in (57) for the convex function f(X) =
1/X. The local quantity 1/σ(x) is probably not equal to the MFP defined in
(50) for any direction Ω. However, it is clearly a better guess than the mean
extinction 〈σ〉. I will call the local quantity 1/σ(x) the pseudo-MFP.

3. The mean FPD is always wider-than-exponential in the sense that its higher-
order moments are always under-estimated by assuming an exponential distri-
bution, even if we make a judicious adjustment for item 2 by using the actual
MFP:

〈E(sq)〉 = Γ (q + 1)〈σ−q〉 ≥ Γ (q + 1)〈σ−1〉q = Γ (q + 1)〈#〉q, q > 1. (70)

This follows from Jensen’s inequality for f(X) = Xq for q > 1, which is also
true for6 −1 < q < 0 (as a means of emphasizing small s values rather than
large ones).

General proofs draw on characteristic-function theory in probability [28]; see Davis
and Marshak [27] for details. Figure 3 illustrates the three results with the sim-
ple Bernoulli variability model in (60), noting that no account is taken (yet) for
correlation lengths as in stochastic RT in Markovian Media.

6 For moments of order q ≤ −1, the PDF (of X = 1/σ in this case) must vanish
sufficiently fast at 0.
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Fig. 3. Remarkable inequalities for propagation in a binary mixture of extinctions,
before correlations are considered. (a)The actual FPD is compared with its two
exponential components for σ1 = 0.2 and σ2 = 1.8 with f1 = f2 = 1/2 in (60);
the short steps are dominated by the dense half and the long ones be the tenuous
half. Two exponential approximations based on 〈σ〉 = f1σ1 + f2σ2 = 1 and on the
actual MFP 〈1/σ〉 = f1/σ1 +f2/σ2 = 2.77... are also plotted. (b)The actual MFP is
compared to the prediction 1/〈σ〉 based on mean extinction as σ2/σ1 increases from
1 to 10 and as the mixing ratio f2/f1 varies; the special case used in panels (a) and
(c) is highlighted. (c)Statistical moments E(sq) of the actual FPD are compared
with the exponential prediction Γ (q+1)〈1/σ〉q based on the actual MFP. The under-
estimation of moments at both higher-order (q > 1) and negative order (q < 0) is
a direct consequence of the wider-than-exponential nature of the actual FPD. Note
that, although their plotted ratio is finite, both moments are in fact divergent for
q ≤ −1. Adapted from Fig. 1 in [27]
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The Key Role of Spatial Correlations

What is the point of the mathematical exercise summarized in the previous sub-
section? What makes an average of the FPD over an ensemble of extinction values
relevant to 3D RT? Can we dismiss the strong corollary that limits the scope of
effective medium theory? These questions can only be addressed by considering the
spatial correlations of the random field σ(x). Indeed, recalling that Ξ is the unit
sphere, we really should have started with

Pr(dτ |s) = Pr{x ∈ M,Ω ∈ Ξ : τ ≤
s

∫

0

σ(x + Ωs′)ds′ < τ + dτ} (71)

for the variability of optical distance over a given physical distance s, rather than
(58).

Implicitly, we have assumed that the development from Eq. (58) to Fig. 3 applies
to

σs(x,Ω) = τ(s; x,Ω)/s =
1
s

s
∫

0

σ(x + Ωs′)ds′, (72)

where we used the definition in (40) and introduce an over-score to denote line-
averaged quantities.7 This is just the line-average of σ(x) along a finite portion of
the beam {x,Ω}. Note that

σ0(x,Ω) ≡ σ(x), ∀Ω, (73)

as long as σ(x) has some degree of continuity, i.e., that the local Hölder (a.k.a.
regularity) exponent h(x) in

|σ(x + r) − σ(x)| ∼ rh(x) (74)

verifies h(x) > 0 almost everywhere.
Apart from somewhat heavier notations, the arguments of Sect. 3.4 leading to the

inequalities in (69)–(70) carry over to σs, as a random field with statistical properties
that will generally depend parametrically on s. However, the equalities expressed in
formulas (69) and (70) to the left of the “≥” carry over as good approximations only
if we add one extra condition. Specifically, we require that the 1-point statistics (i.e.,
PDFs) of σs depend only weakly on s over a significant range of s-values starting of
course at 0. As it turns out, this mandates that the extinction field has correlations
over that same range of scales, at least in its 2-point statistics such as the (2nd-order)
structure function, 〈[σ(x + r)− σ(x)]2〉 where r, is a given displacement vector. See
the appendix in Davis and Marshak [27], with A. Benassi, for a detailed proof.

This is just a formal way of making a quite natural assumption, one that all
instrument designers make to some extent for the purposes of signal-to-noise man-
agement. We are simply saying that a (less noisy) estimate of a spatial average is
almost as good as a quasi-point-wise value, only with some tolerable (and maybe
correctable) loss of extreme values. And this in turn requires that the optical medium
has correlations over the range of scales for which (74) applies. As shown by Davis

7 Recall that averages over the 3D disorder are denoted 〈·〉 while averages over the
photon transport are denoted E(·).
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and Marshak, the well-documented turbulent/fractal structure of terrestrial clouds
guarantees that such correlations exist. Indeed, clouds are “scaling” in the sense
that

〈|σ(x + r) − σ(x)|p〉 ∼ rζ(p) (75)

over a significant range of scales r (2 to 3 orders of magnitude at least). The l.-h.
side of (75) is called the “pth-order structure function” and ζ(p) is known to be a
continuous concave function as long as the dependance on p of the prefactors on
the r.-h. side can be neglected (yet another consequence of Jensen’s inequality). The
exponents ζ(p) can in fact be obtained from the spatial/ensemble statistics of h(x) in
(74), and vice-versa, using Frisch and Parisi’s [29] multifractal formalism. This kind
of scaling is associated with long-range correlations and leads to a correspondingly
weak dependence on s of the PDF of σs in (72); see Fig. 4 for computations based
on synthetic turbulence data.
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Fig. 4. Example of a transect through a random multifractal extinction field with
lognormal statistics. This data is synthetic but the 1- and 2-point statistics are
typical of in-cloud extinction variability [30] and such stochastic models are used
routinely in 3D RT cloud studies. (a)Sample realization σ(x) with a log-normal PDF
generated by exponentiating fractional Brownian motion [31] with a wavenumber
spectrum in k−5/3; the mean (solid line) is set to unity and the std. dev. is ±1/3
(dashed lines). (b) Illustration of the “1-point scale-independence” property [27]:
PDFs of segment averages σs(x) in (72) do not depend on segment length for all
but the most extreme values. Adapted from Fig. 6 in [27]

That is not the end of the story. It is important to assess the resilience or fragility
of Beer’s exponential transmission law to perturbation by 3D variability. Under what
conditions is the MFP significantly larger than 1/〈σ〉? And when are the qth-order
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moments (q > 1) of s significantly larger than the prediction of the exponential
distribution? Intuitively, this calls for two conditions:

1. that the amplitude of the 1-point variability is sufficient (cf. Fig. 3b);
2. that at least some of the scales of correlated 2-point variability are commensurate

with the MFP.

In item 2, we are thinking about the actual MFP and not the biased estimate
1/〈σ〉. Recall that the actual MFP can become much larger than 1/〈σ〉 if there are
significant regions of low extinction (consider Fig. 3b when σ1 becomes very small).

Davis and Marshak call condition #2 “resonant” variability noting that it is a
rather broad resonance, easily achieved in terrestrial clouds and cloud systems. So
non-exponential transmission laws are expected to be the rule rather than the ex-
ception. Other situations can however arise, at least in theory. At a given amplitude,
even quite large amplitude variability can be “too fast” or “too slow” to generate
the interesting non-exponential transmission laws. To wit,

• if the extinction field is varying so fast that every photon can sample essentially
all the variability between almost every scattering, emission or absorption event,
then surely only the ensemble-mean extinction really matters because that is (to
high accuracy) the outcome of (72);

• in contrast, if the extinction field varies so slowly that from its creation to its
absorption, escape or detection each photon samples basically just one value of
σ, then the ensemble-average transmission law is irrelevant to the transport.

The former is the too-fast scenario, a.k.a. the atomistic mix (in stochastic RT the-
ory), and the pertinent approach to assess the bulk transport is to use the mean
properties in a homogeneous computation. The latter is the too-slow scenario and
an average over homogeneous multiple-scattering computations weighted by the 1-
point statistics of the extinction field. This procedure is known in cloud radiation
studies as the Independent Pixel/Column Approximation [32, 33].

Non-Poissonian Point-Process Approach

In this subsection, I adopt Kostinski’s [26] perspective on extinction as a point
process. I’ll start with uniform optical media. Infinitesimal particles are distributed
at random, uniformly in space, according to some density n. The photons in a given
light beam interact with these particles simply where they are, so extinction events

1. are a statistically homogeneous process, i.e., which does not depend on position;
2. for small enough volumes, the probability of intercepting more than one photon

is vanishingly small; and
3. events in non-overlapping volumes are statistically independent.

These properties define a Poisson point-process [34]. So the discrete probability
of obtaining exactly N ≥ 0 photon interactions (extinction events) over a given
distance s is

pN (s; m) = pN (m) =
mN

N !
× e−m (76)

where the sole parameter is the mean of N at given s,

m = E(N |s). (77)
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The variance D(N |s), defined as in (56), of a Poisson deviate is equal to its mean.8

We also re-emphasize that, since we are averaging here over the photon transfer
events, we use the notation with E(·)’s.

Now, setting N = 0 (no events whatsoever over the segment of given length s),
we get p0(s) = exp(−m). By definition, this is direct transmission Tdir(s). We can
therefore make the identification

m = τ(s) = σs (78)

in (43), recalling that we found σ (in this case constant) to be particle density n times
the collision cross-section per particle s. This is reminiscent of the interpretation of
optical distance τ(s) as distance s in units of MFPs; more precisely here, τ(s) is the
average number of collisions m suffered over distance s, at the average rate of one
per MFP. Of course, at the single photon level, only one such interaction is enough
to remove it from the beam, however, a small number of lucky ones can travel across
large (optical) distances, that is, several MFPs.

We now turn to “lumpiness” in non-uniform optical media, translating to spatial
correlations between the particles, hence between the extinction events. In point
process theory, correlation is defined as the deviation from Poissonian behavior in
the joint probability of finding exactly one particle in each of two small volumes δV1

and δV2 at a distance r:

Pr{N1 = N2 = 1; n, r} = n2δV1δV2[1 + η(r)] (79)

where n is the mean density of the particles. Because of their independence in a
uniformly random medium, the Poissonian prediction is η(r) = 0 while η(r) 0= 0
corresponds to some kind of particle correlation in the medium. In short, we retain
above properties #1 and #2 but relax #3.

Another, more practical, way of defining η(r) uses the “pair correlation” 〈N(0)N(r)〉.
We have

η(r) = 〈N(0)N(r)〉/〈N〉2 − 1 (80)

where N is the number of particles in the small9 test volume δV . We have 〈N〉 = nδV
and we consider two such volumes at a distance r. If the events N(0) and N(r) are
independent, then 〈N(0)N(r)〉 = 〈N(0)〉〈N(r)〉 = 〈N〉2, hence η(r) = 0. Note that,
as in (61), we are averaging here over the disorder of the particle distribution, hence
the use of 〈·〉’s.

Following Landau and Lifschitz’s [35] general analysis of fluctuations and corre-
lations in gases and liquids near a phase transition, it can be shown that, in a small
test volume δV , one has

〈δN2〉 = 〈N〉 + η〈N〉2 (81)

where δN = N −〈N〉 and η is the volume average of η(r) over δV . For example, we
have

η(r) =
3
r3

r
∫

0

r′2η(r′)dr′ (82)

8 This might sound dissonant to some readers on dimensional grounds. (Should
that not be standard deviation =

√
D? That is until we recall that this random

variable is a pure number: we are just counting events.
9 As nδV becomes small, we have N = 0, 1 depending on whether a particle is

present or not, the former becoming the dominant event as soon as nδV * 1.
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with r = 3
√

3δV/4π in the case of a spherical volume. Any deviation of η from 0 in
(81) takes event variance 〈δN2〉 away from the Poissonian value of 〈N〉.

Returning to photon transport through a particulate medium, how do we now
estimate pN (s) in the presence of spatial correlations? Kostinski proposes to use
Mandel’s formula from statistical optics [36]:

〈pN (s)〉 =

∞
∫

0

pN (s|m) Pr(dm) =
1

N !

∞
∫

0

mNe−m Pr(dm) (83)

where Pr(dm) is the element of probability that the sole parameter of the (discrete)
Poissonian distribution in (76), now a (continuous) random variable, falls between
m and m+dm. Accordingly, we have transmuted the “;” separator into a “|” in the
argument of pN under the first integral.

For N = 0, this is equivalent to the computation of 〈e−τ(s)〉 =
∫

exp(−τ) Pr(dτ |s)
in (66) since τ is also equal to m = σs, σ being the random quantity at present. So
the three general properties of 〈e−τ(s)〉 and its derived quantities stated in Sect. 3.4
will follow from this alternative model for photon transport.

The close formal analogy between (66) and (83) is traceable to the close con-
nection between collision statistics, (direct) transmission, and FPDs. The essential
difference between the continuum transport-theoretical and random point-process
approaches is that, coming from the latter less-familiar perspective, the question
of spatial correlations (i.e., droplet clumping tendencies) arises immediately, at any
rate, before the question of how to average over the spatial disorder. In the more
familiar continuum approach, we first argued for averaging the (partial) kernel and
then argued that the outcome, as strikingly different as it is from an exponential,
is only relevant if the optical medium has spatial correlations that overlap with
the MFP. The central role of the MFP is not that obvious in the point-process
framework.

3.5 Results for Gamma-Distributed Extinctions,
and Point-Process Equivalents

We assume here a Gamma-distribution for τ = m in (83) or, equivalently, for τ = σs
in (64) at a given distance s. The two parameters of this distribution are the mean,
〈σ〉s, and10

a =
〈τ(s)〉2

〈(τ(s) − 〈τ(s)〉)2〉
=

{

〈σ〉2/〈(σ − 〈σ〉)2〉 in the continuum approach
〈m〉2/〈(m − 〈m〉)2〉 in the point-process approach

(84)
where we recognize a variance in the denominator. So the degenerate (uniform ex-
tinction, Poissonian events) case is retrieved in the limit a → ∞: as in (59), no
variance at all. The PDF for τ(s), hence for m, reads as

Pr(dτ |s) = p(τ ; 〈σ〉s, a) dτ =
1

Γ (a)

(

a
〈σ〉s

)a

× τa−1 exp[−aτ/〈σ〉s] dτ. (85)

10 a is the squared inverse of the standard non-dimensional variability parameter,
i.e., std.-dev./mean.
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The second argument —and first parameter— is the mean of τ(s). By writing it as
〈σ〉s the given step size s appears. The Gamma-distribution has the exponential (or
Laplace) law of extinction variability as a special case when a = 1:

Pr(dτ |s) = p(τ ; 〈σ〉s, 1)dτ = exp[−τ/〈σ〉s]dτ/〈σ〉s, (86)

not to be confused with (Beer’s) exponential law of direct transmission. As another
example, reconsider Figs. 4 where we see a synthetic in-cloud variability with a = 9
in (84), a reasonable amount of skewness (log-normal PDF), and realistic 2-point
correlations (associated with the prescribed k−5/3 wavenumber spectrum).

The above choice of variability model for τ(s) is not arbitrary. We have adopted
the convenient as well as reasonably accurate parameterization by Barker et al. [37]
of the observed variability of optical depth (measured vertically) in high-resolution
satellite images of a wide variety of cloud scenes. Figure 5 reproduces their evidence
for Gamma-distributions for τ(s), where s is the thickness of the cloud layer using
LandSat imagery with ≈30 m pixels and ≈60 km swaths. We note that Barker
et al.’s determination of cloud optical depth for each LandSat pixel is based, as
usual in cloud remote sensing, on a 1D RT model and this procedure is known to
underestimate the variance [38]; so the inferred values of a are likely to be upper
bounds.

In the continuum approach from Sect. 3.4, this choice of variability model applied
to (66) yields

〈Tdir〉(s; 〈σ〉, a) = 〈e−τ(s)〉 =
1

(1 + 〈σ〉s/a)a
(87)

for the mean transmission law which is plotted in Fig. 6b. As expected, the ex-
ponential law exp(−〈σ〉s) is recovered (using L’Hôpital’s rule) in the degenerate-σ
limit a → ∞. Otherwise, direct transmission is effectively power-law, with diverging
moments 〈E(sq)〉 for q ≥ a. Assuming a > 1, the MFP exists and is given by

〈E(s)〉 = 〈σ−1〉 =

(

a
a − 1

)

〈σ〉−1. (88)

Notice the excess over the standard prediction using 〈σ〉−1. It is easy to verify here
the general result that 〈E(s)〉 = 〈1/σ〉 using the PDF in (85).

In the discrete point-process approach from Sect. 3.4, the same choice of vari-
ability in Eq. (85) now reads as

Pr(dm|s) = p(m; 〈σ〉s, a)dm =
1

Γ (a)

(

a
〈σ〉s

)a

× ma−1 exp[−am/〈σ〉s]dm (89)

where 〈σ〉s = 〈m〉. Applying this to (83) leads to a so-called negative binomial
distribution for N . More precisely, we have

〈pN (s)〉 = pN (〈σ〉s, a) =
(〈σ〉s)N

N !
× Γ (N + a)

Γ (a)(a + 〈σ〉s)N
× 1

(1 + 〈σ〉s/a)a
. (90)

The case a ∈ N − {0} = {1, 2, . . .} is known as the Pascal distribution and it arises
naturally from the theory of Bernoulli processes. Specifically, the question is about
the probability of having exactly a ≥ 1 successes with probability p and N ≥ 0
failures with probability q = 1−p, ending with a success, when p = 1/(1+〈σ〉s/a) ≤
1. Equation (90) can thus be expressed formally as
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Fig. 5. Empirical support for Gamma-distributed extinction variability in the
Earth’s cloudy atmosphere, reproduced from Figs. 1–2 in [37] with permission.
(above)Cloud optical depth fields retrieved from more or less cloudy LandSat
images: upper row, very cloudy (1.6 ! a ! 22.5); middle row, partially cloudy
(0.4 ! a ! 1.3); lower row, sparse clouds (0.2 ! a ! 0.8). Note that optical depth is
proportional to extinction averaged vertically over the thickness of the cloud layer.
(below)The inferred Gamma distributions (in one-to-one correspondence with the
above images) are generally in good agreement for the whole optical depth PDF: ob-
served histograms in solid lines; Gamma-PDF predictions (based only the observed
mean and variance) in dashed lines. Figure 6a illustrates in more detail the whole
family of Gamma distributions.
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tails

〈pN (s)〉 = (−1)N

(

−a
N

)

×
(

〈σ〉s
a + 〈σ〉s

)N

× 1
(1 + 〈σ〉s/a)a

(91)

even if a > 0 is non-integer.11

For N = 0, we naturally find the same non-exponential transmission laws as in
(87) and Fig. 6b. However, looking back at (49), where we assumed a = M + 1 for
a fixed value of 〈σ〉s, we can interpret “success” probability p = 1/(1 + 〈σ〉s/a) ≈
1 − 〈σ〉s/a as that of a particle being transmitted through the 1/ath part of s
for a given 〈σ〉. Thus, for N = 0 “failures” to be transmitted a successive times
through that ath portion of optical distance 〈σ〉s, we indeed find (87) for the direct
transmission. So clearly the most interesting situation is when a ≈ 〈σ〉s, i.e., when
any given physical distance s is divided roughly into as many distinguishable parts
or “clumps” as its (mean) value in optical units.

The mean of N is still E(N) = 〈σ〉s in (90). Mimicking the form of (81) to
emphasize the relation to pair-correlations, we find for the variance of N

D(N) = E(δN2) = E(N) + ηE(N)2 (92)

where δN = N − E(N) with
η = 1/a ≥ 0. (93)

Accordingly, 〈pN (s)〉 in (90) is sometimes called the “over-dispersed” Poisson distri-
bution. It is nonetheless remarkable that in (93) the point-process approach ties the
2-point statistical quantity η in (81) and the 1-point statistical variability parameter
a from (84). In density-based stochastic modeling, one can generally choose the PDF
and the correlation structure independently.

11 The usual binomial coefficients
(

n
i

)

are defined by the identity (p + q)n =
∑n

i=0

(

n
i

)

pn−iqi where p + q = 1 in the well-known application to combina-
torics; “negative” binomial coefficients are defined by the identity (1 − q)−r =
∑∞

i=0

(

−r
i

)

(−q)i for r > 0.
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The above results generalize at once the Poissonian (a = ∞, D(N) = E(N))
case in (76) with m = 〈σ〉s and the a = 1 case in (86) that was used by Kostinski
[26] as a rather extreme example of sub-exponential transmission:

〈Tdir〉(s; 〈σ〉, 1) = p0(〈σ〉s, 1) =
1

1 + 〈σ〉s
. (94)

This is indeed the critical value of a at which the MFP becomes (logarithmically)
divergent and it hails from the special case of (90) with a = 1 known as the geometric
distribution,

pN (〈σ〉s, 1) =

(

〈σ〉s
1 + 〈σ〉s

)N

× 1
1 + 〈σ〉s

. (95)

That is the probability of exactly N ≥ 0 failures before one success when each
Bernoulli event is a success with probability p = 〈Tdir〉 = (1 + 〈σ〉s)−1 in (94).

3.6 From Positive to Negative Correlations

Physically, what is it about the spatial correlations that is causing the system-
atic deviations from exponential transmission? Even if there is a single direction of
propagation, we are always computing a projection of the particle-light interaction
cross-sections parallel to the beam (cf. Fig. 1). There is naturally random overlap in
these projections. What the spatial correlations effectively do is to cause more over-
lap in the projections, hence more photons are transmitted. The sub-exponential
laws we found above are the statistical consequence of this clustering.

From there, it is of interest to consider the possibility of negative correlations
in the spatial fluctuations of the extinction field (in the continuum approach) or
in the pair-correlation function (in the point-process approach). In the extinction
field picture, this means that a fluctuation above the mean is more likely than not
to be very quickly followed by a fluctuation below the mean, and vice versa; in a
sense, this is “fast” variability with a tendency to overshoot the mean. In the pair-
correlation picture, this means that the scattering/absorbing particles essentially
repel each other, leading to even more uniformity in space than obtained by random
(Poisson) positions. The outcome in (80) is η(r) < 0 at least for small values of
point-separation distance r. From there, η(r) in (81)–(82) will also be < 0, at least
for small enough δV (r) = (4π/3)r3.

What are the consequences of negative correlations for photon transmission?
Shaw et al. [39] use the pair-correlation model to show that a super-exponential
(faster-than-exponential) transmission law will follow from η(r) < 0. The contin-
uum approach has more trouble here because negative correlations are just different
incarnations of the uniform-σ hypothesis.

The question of how relevant negatively-correlated media are to atmospheric op-
tics is, at present, entirely open [27]. The balance of evidence however favors further
consideration of the positive correlations related to droplet or cloud clustering. The
known mechanisms that cause cloud particles to repel each other, as listed by Shaw
et al. [39], indeed require either very close proximity (threatening the important di-
lution requirement in any transport theory based on geometric optics) or else rather
unusual circumstances (e.g., still air, electric charge separation). Negative correla-
tions can occur also at macroscopic scales: certain types of cloud layers (e.g., marine
stratocumulus) are systematically topped by clear layers, trains of orographic clouds
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downwind from a mountain range will also yield negative correlations at regular dis-
tances. However, in both these cases, any chance of occurrence of another cloud
further along in the vertical or horizontal direction will restore positive correlations,
which already dominate at the micro-scale.

3.7 Summary, Discussion, and Outlook

On the one hand, we have established the deep non-Poissonian nature of photon
transport in variable optical media and, on the other hand, we have underscored the
importance of having spatial correlations over MFP scales to obtain non-exponential
FPDs. An inescapable consequence of deviations from spatial uniformity of the cloud
droplets is that the mean (or effective) photon transport kernel is non-exponential.
More precisely it is sub-exponential in the case of positive correlations (clumping
tendencies).

In the atmosphere, spatial correlations in cloud structure exist over a vast range
of scales horizontally as well as vertically, although clearly in qualitatively different
ways. This range goes from centimeters at least up to the thickness of the tro-
posphere (≈10 km), and often much more in the horizontal. There are both positive
and negative correlations, but at scales that matter for photon transport they are
overwhelmingly positive.

Two-point spatial correlations, even of the right sign and over the right range of
scales, are of little consequence unless extinction (and, hence, the pseudo-MFP) also
vary widely enough in the sense of the 1-point statistics (i.e., the PDF). Consider
the following two scenarios:

• In a single dense un-broken cloud layer, the MFP is small with respect to the
physical thickness of the layer. This is equivalent to saying that the layer is opti-
cally thick and that (literally) an exponentially small amount of direct sunlight
gets through.

• Now imagine a complex situation with broken clouds and possibly also multiple
layers (not necessarily all optically thick), and add to that a partially reflective
surface. In this case, the optical quasi-vacuum between the clouds dominates
the average 〈1/σ〉 of the local pseudo-MFP. So this estimate of the overall MFP
can be huge, possibly larger than the physical thickness of the whole cloudy
region. In particular, abundant direct sunlight can reach the ground in spite of
the presence of clouds.

In the following section, we will see that

• in the former case, radiation is transported by standard diffusion, each photon
executes a convoluted trajectory. This path is a classical (Gaussian) random walk
with an inner cut-off at the small MFP scale and an outer cut-off determined by
the finite thickness of the cloud layer.

• in the later case, radiation is transported by anomalous diffusion where most
steps in the random walk (inside clouds) are small but some steps (between
clouds and/or surface) can be huge. This is as predicted by the basic transport
computations presented above in the presence of positive correlations and, in
this case, the photons execute Lévy-type random walks [40] where the tail of the
step distribution is power-law.
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Before moving on, we note that Borovoi [41] objected to Kostinski’s [26] link-
age of non-Poissonian droplet distributions and sub-exponential transmission laws
in the light of his previous [42] investigation that used standard transport theory
and favored effective medium theory (hence modified exponential transmission laws).
Kostinski’s reply [43] is worth reading in that it (1) reasserts the relevance of the
spatial correlations, and hence of non-exponential transmission laws, and (2) claims
that the point-process model is more general than standard transport theory be-
cause it allows for negative correlations. In [27], we agree with Kostinski on the
former claim, coming from the transport theoretical perspective used by Borovoi
(cf. Sects. 3.4–3.4), but we have reservations about the latter claim. First, the at-
mospheric scenarios for negative correlations are marginal if not implausible (as
argued above); secondly, empirical evidence weighs in for sub-exponential transmis-
sion laws (cf. Sect. 5); thirdly, I have unpublished results showing that density-based
computations can handle negative correlations and lead to super-exponential trans-
mission laws (the variability of course has to violate the continuity conditions re-
quired in the above). Most importantly however, the author views this as a healthy
debate on the fundamentals of 3D RT.

4 Multiple Scattering and Diffusions

4.1 Multiple Forward Scatterings

Let Ω0 be the initial direction of propagation in R
3, or position on Ξ, for a

particle beam in a medium with conservative ($0 = 1) axi-symmetric scatters.
The medium may be variable but we will assume the scattering phase function
is the same everywhere. By symmetry, the average direction E(Ωn) is Ω0 for any
number of scatterings n. By taking Ω0 as the polar axis (µ0 = 1), we can use
θn = cos−1(Ω0 • Ωn) = cos−1(µn) to measure the (great-circle) distance on Ξ
between initial and current directions of propagation.

From (29), we know that

E(Ω0 • Ω1) = . . . = E(Ωn−1 • Ωn) = g ∈ [−1, +1]. (96)

I now show by induction that

E(µn) = E(Ω0 • Ωn) = gn. (97)

Indeed, the only component of interest is (Ωz)n = µn; all others vanish upon aver-
aging, by symmetry. From spherical trigonometry,

µn+1 = µnµs +
√

1 − µ2
n

√

1 − µ2
s cos φs (98)

where the azimuthal angle φs in the second term is uniformly distributed on [0,2π)
and uncorrelated to θs and θn; so it averages to zero. Therefore E(µn+1) = E(µnµs).
Like in the propagation part of particle transport, there is a (discrete) Markovian
property for scattering: transition probability is independent of present state. This
leads to12

12 An interesting corollary of this recursion formula is that, if the phase function is
Henyey–Greenstein, then the angular distribution of n-times scattered radiance
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E(µn+1) = E(µn)E(µs) = E(µn)g, ∀n, (99)

and thus completes the proof.
Equation (97) enables us to quantify accurately the decay of directionality in a

light beam embedded deeply in a uniform turbid medium, sometimes called “bloom-
ing:” Ωn can be anywhere on Ξ with almost equal probability as soon as we have,
say, E(µn) ≈ 1/e. This happens at a critical scattering order n∗ ≈ −1/(ln g). For
small enough values of (1 − g), this reads as

n∗ ≈ 1/(1 − g) (100)

which roughly defines the number of forward-peaked scattering events required for
the photon to loose almost all memory of its original direction of travel. Another
way of showing that directional memory is short (i.e., lost in finite time) is to view
the typical great-circle distance from the origin, θn = cos−1 µn, as a discrete-time
diffusion on the sphere. By identifying E [cos θn] ≈ 1−E [θ2

n]/2 on the tangent plane13

of Ξ at µ = 1 and, remarking that gn = [1−(1−g)]n ≈ 1−n×(1−g) when (1−g) * 1,
we obtain

E [θ2
n] ≈ 2(1 − g)n. (101)

So 2(1 − g) plays the role of a diffusivity constant. Based on (101), where do we
expect θn to be for n = n∗ in (100)? Approximately at

√
2 rad (hence ≈ 90◦) on

average, meaning almost anywhere on Ξ for a given realization.
In summary, photons emanating from a collimated beam in a scattering medium

with a forward-peaked phase function have a collective memory of their original di-
rection, but it is a relatively short term memory. The higher the number of scatter-
ings, the more isotropic the corresponding radiance, independently of spatial consid-
erations (boundaries, internal variability). The critical number of scatterings needed
to redistribute radiance in direction space is estimated to be ≈ (1 − g)−1. In a gen-
eral multiple-scattering problem we can define the equivalent number of isotropic
scatterings as

niso = n/n∗ ≈ (1 − g)n. (102)

4.2 Impact of Forward Scattering on Propagation:
The Transport MFP (without Fick’s Law)

We are now in a position to look at the spatial consequences of the short-term
memory of propagation direction due to forward-peaked but conservative ($0 = 1)
scattering, as described in Sect. 4.1. The light particles are executing directionally-
correlated random walks based on a FPD that need not be specified beyond the
fact that the MFP # must exist. We again assume the photons all leave the origin
in direction Ω0 at time n = 0.

(in the absence of boundary and 3D effects) is Henyey–Greenstein with g(n) = gn.
Since (under these same conditions) vectorial addition of random directions is
determined by spherical convolutions of the PDFs that are phase functions, this
implies that Henyey–Greenstein functions are the spherical equivalent of Gaussian
PDFs: invariant, modulo scaling, under convolution.

13 This 2nd-order (Gaussian) approximation is at the core of the “small-angle” ap-
proximation in RT theory used extensively in imaging and lidar studies [44].
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In the discrete-time picture, the particle is then displaced from position x0 = 0
to x1 = x0 + s0Ω0, where s0 is the initial step size. Holding Ω0 fixed, we have

E(x1) = E(s0)Ω0 = #Ω0, (103)

using the definition of MFP in (50) or (52). From x1, and conditional to not being
absorbed, the photon moves on to x2 = x1 + s1Ω1. It is clear that

E(x2 − x1) = E(s1)E(Ω1 • Ω0)Ω0 (104)

since the propagation and scattering are independent, another consequence of the
Markovian property of transport.

Now, after the first scattering and second step, it follows from (96) that

E(x2) = [E(s0) + E(s1)E(µs)]Ω0 = (1 + $0g)#Ω0, (105)

where it is assumed that the 1st and 2nd FPDs have the same MFP and that an
absorption may have occurred at x1 with probability 1 − $0 ≥ 0. By iteration, the
independence of step-sizes and step-directions leads under the same assumption to

lim
n→∞

E(xn) • Ω0 = #
∞

∑

n=0

$n
0 E(µn) = #

∞
∑

n=0

($0g)n =
#

1 − $0g
. (106)

So, after many scatterings, the cumulative effect of forward scattering is simply to
boost the initial ballistic motion by a factor (1 − $0g)−1. The distance in (106) is
the well-known transport MFP

#t =
#

1 − $0g
. (107)

Note that we have made no assumption about the FPD beyond the existence of
a MFP; in particular, no spatial homogeneity assumption per se was made, only
constancy of the MFP # (in some spatial/ensemble average sense if required).

The emergence of the transport MFP in (107) as the residual impact of short-
term directional memory on propagation is in sharp contrast with the usual deriva-
tions which come along with the diffusion/P1 approximation to the full 3D RT
problem in (1)–(3). This classic macroscopic approach to the transport problem is
encapsulated in Fick’s law [45], relating particle density and current:

F = − c#t
3

∇U (108)

where
{

U(t, x)
F(t, x)

}

=

∫

4π

{

1/c
Ω

}

I(t, x,Ω)dΩ (109)

defines particle (in our case photon) density and current (or net vector flux), antic-
ipating the generalization in Sect. 5.2 for time dependence.

Fick’s law (108) is the constitutive relation that closes the macroscopic transport
problem started with continuity equation obtained by expressing particle conserva-
tion:

∂U
∂t

+ ∇ • F + cσaU = 0, (110)
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where the two last terms come from the angular integral of the steady-state 3D RT
equation in (1)–(3) in the absence of sources.

At least to a first approximation, the total path L of a photon is n × #. Notice
that (for $0 = 1) the same answer is obtained if we reckon on the actual MFP and
number of scatterings, or on the effective number of isotropic scatterings niso in (102)
and the transport MFP #t in (107). This makes physical sense since L/c is simply
the time since the photon was emitted and it should not depend on whether we
count actual scatterings and MFPs or effectively isotropic scatterings and transport
MFPs.

In summary, photons in an isotropically scattering medium (g = 0) lose track
of their direction of propagation at every step (average length #), but it takes their
positively Ω-correlated counterparts about (1 − g)−1 forward-peaked scatterings
to “forget” their original direction.14 In the process, this causes them to travel
(on average) that much further by drifting in the original direction. So #t can be
interpreted as the effective MFP for obtaining one isotropic scattering. Figure 7
illustrates these results in two spatial dimensions.

4.3 Asymptotics of Standard and Anomalous Diffusion in Finite
Media

The overarching goal of the research program surveyed in this paper so far is to
decompose ensemble-average (or large-scale) photon transport in 3D media into
processes that are simpler to model, namely, diffusions. Photons diffuse in direction
space and loose track of their original direction in finite time but cumulate over this
time interval an extended displacement in the original direction, hence the origin
of the transport MFP. To a first approximation, one can view photons executing
random walks (isotropic reorientation at each step) with a mean step given by #t
and other aspects of the step distribution controlled by the FPD. Figure 8 illustrates
schematically random walks of solar photons from the top of the atmosphere to the
ground or back to space; notice how horizontal and vertical gaps in the cloudiness
promote very large steps.

Adopting a Lagrangian perspective on photon transport, let x0 = 0 be the point
of departure of the random walk:

xn+1 = xn + s, (111)

where s is a random step drawn from the given FPD, hence

xn =
n

∑

i=0

si. (112)

We are now in one of two situations. If D(s) = E(s2) < ∞, then

E(x2
n) ∼ #2t n, (113)

14 Although it is a regime mostly of academic interest, our computations work also
for −1 ≤ g < 0. In particular, at g = −1 we find #t = #/2. It takes only 1/2 of a
MFP (and scattering) to loose directional memory when propagation direction is
exactly reversed at each event (For a given particle, all happens on a given line
if g = −1, irrespective of dimensionality, but there is still an original direction.)
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Fig. 7. Rescaling of the mean-free-path due to forward-peaked scattering in a uni-
form medium. (a) The exponential law of extinction that dictates the distribution
of free paths s: Pr{step ≥ s} = exp(−s/#) with unit mean (# = E(s) = 1). (b)
The scattering kernel p(θs) from (33) is used, the 2D counterpart of the Henyey–
Greenstein model in (30); this PDF describes the distribution of scattering angle
θs, with an asymmetry factor g = E(cos θs) = 5/6 = 0.8333 · · ·. In panels (a-b),
error bars are based on expected (Poissonian) means and variances in number of
events per bin for a total of 7×16 = 112 samples. (c) Seven 2D particle trajectories
starting straight down at the origin, all nmax = 16 scatterings long. The l.-h. scale is
in MFPs; the r.-h. z-axis uses “transport” MFPs from Eq. (107). In the lower l.-h.
corner, an indication of the average direction of travel is plotted for n = 1, . . . , 16
and ∞; in the upper l.-h. corner, the corresponding theoretical average positions
are indicated for orders-of-scattering n = 1, . . . , 16,∞ and again for n = 1, 2, 16
obtained empirically, with st. dev.’s. After a number of anisotropic scatterings, the
particle may just as well have been scattered isotropically once, but the MFP for
such a scattering is longer by a factor 1/(1 − g) = 6. Adapted from Fig. A1 in [40]
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Fig. 8. Solar photons propagating in the cloudy atmosphere. We consider a wave-
length where there is no absorption by cloud droplets nor gases. Each “step” in the
photon’s random walk is in fact rescaled, as in (107), so that the scattering can be
considered isotropic. Notice how the upper (cirrus) cloud layer can let light through
directly as well as produce a diffuse illumination of the lower layers; at the same
time, it reflects up-welling light back towards the ground.

since we can always relate numerically the variance of the FPD to the transport
MFP. However, there is another possibility (D(s) = ∞) and another outcome:

E(xα
n) ∼ #α

t n, (114)

where
α = min

q
{0 < q < 2 : E(sq) = ∞}. (115)

This important quantity is known as the Lévy index and it dictates the far-field
behavior of the effective FPD we have adopted from (67):

〈
∣

∣

∣

∣

dP
ds

∣

∣

∣

∣

〉

∼ 1
s1+α

, s → ∞. (116)
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We will require α > 1 so that #t = E(s) < ∞. The process described by (113) is
called diffusion15 and we will be more specific in calling it “standard” diffusion.16

The process described by (114) is called “anomalous” diffusion.
Note that, in spite of their formal similarity, the origins of (113) and (114) are

fundamentally different. The origin of (113) is the well-known law of probability that
variances of sums of independent random deviates add, and we simply replaced the
(finite) variance of the FPD by a dimensionally equivalent parameter (#2t ). The origin
of (114) is necessarily different since E(sα) = ∞, although it is a slow (logarithmic)
divergence. So we are slightly abusing the notation E(·) in (114) and instead interpret
it as an “estimator” in sampling theory: we simply sum n random variables s taken
to the power α from a PDF with property (116), and then divide by n. For a fixed
n, this ratio will increase slowly as log n. The sum itself, will grow as n log n times
some scaling factor for the PDF which, apart from a numerical factor, can be taken
as #α

t . In (114), we have summarized this argument and neglected the unimportant
logarithmic term as is customary in scaling analysis.

The task now is to convert the above information above unbounded random
walks in general into more useful information about random walks by photons in
finite optical media. A first question we have is about the number of (effectively
isotropic) scatterings niso,T suffered by photons before crossing the medium (e.g.,
solar light transmitted to the ground). This is a random number of course but we
can estimate approximately its mean by re-assessing (114), extended to include the
case (113), as to what is given and what is averaged. If we identify the expectation
(or estimation) on the l.-h. side with Hα then we can solve for a rough estimation
of

〈E(niso,T )〉 ∼ (H/#t)
α. (117)

We have yet to convert the above scale ratio into an optically meaningful quantity.
Letting 〈τc〉 denote the ensemble-average cloud optical thickness, we have

H/#t 7→ (1 − g)〈σ〉H = (1 − g)〈τc〉 (118)

at non-absorbing wavelengths, i.e., when $0 in (12) is unity.
As it turns out, E(niso,T ) and even E(nT ) are not readily observable quantities

while the transit time (a continuous random variable) is.17 A more convenient as-
sessment of transit time is therefore total photon path length LT which is roughly

15 This nomenclature is fully consistent with the diffusion approximation obtained
in a variety of ways from the traditional Eulerian perspective used in transport
theory.

16 For the classic Eulerian derivation of (113), we substitute (108) into (110) with
σa = 0. This yields the prototypical parabolic PDE ∂tU = D∇2U , where
D = c#t/3 is the diffusivity (assumed constant), to which we apply the ini-
tial condition U(r, 0) = δ(r). The well-known solution for t > 0 is U(r, t) =
exp(−r

2/4Dt)/(4πDt)3/2. Recall now that, with this normalization, density U is
simply the probability of finding the diffusing particle at position r at time t.
Thus E(r2|t) =

∫ ∞

0
r
2U(r, t)dr = Dt where we can identify the continuous time

t with pathlength #tn in (113) divided by c.
17 For transit time, we can use either a pulsed laser or the absorption by a uniform

gas (cf. Sect. 5) while for estimating order of scattering statistics we would need
to use an absorption feature of the scattering particles, here, the cloud water
droplets.
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# (#t) times nT (niso,T ). For means, we have

E(LT ) ≈ #E(nT ) ≈ #tE(niso,T ). (119)

Assembling the information in the last three equations, we find

〈E(LT )〉 ∼ [(1 − g)〈τc〉]α−1H. (120)

Another observable and radiometrically important quantity is the probability
T of photon transmission through the medium, irrespective of the transit time. To
access this deceptively simple property, we need to invoke a lesser-known law for
random walks on a half-space. If the random walking particles all leave the plane
z = 0, how many steps does it take to return to the plane of departure? It is easy
to see the analogy with photon reflection from a semi-infinite optical medium, and
the answer is [46, 47]

Pr{(discrete) return time ≥ n} ∼ 1/
√

n (121)

in the regime n + 1. This remarkable PDF has infinite variance and infinite mean
(only moments of order <1/2 converge). Davis and Marshak [40] brought together
the straightforward estimation of 〈E(niso,T)〉 in (121) and (117) to estimate trans-
mission probability

Pr{return time ≥ 〈E(niso,T )〉}∼ (H/#t)
−α/2. (122)

In more optical terms, we have

T ∼ [(1 − g)〈τc〉]−α/2. (123)

With so many layers of approximation, it is hard to take the generalized (stan-
dard and anomalous) photon diffusion theory we have just exposed seriously as a
model of radiation transport in the Earth’s cloudy atmosphere. However, the theory
does make specific predictions for observable quantities in the time-domain (120)
and in steady-state (123). In the next section, we show using both new simulations
and new observations that the phenomenology of generalized photon diffusion does
seem to capture key aspects of real 3D RT in the real atmosphere.

5 Large-Scale 3D RT Effects in Cloudy Atmospheres

5.1 Overcoming the Challenge of Observing 3D Effects in
Steady-State RT

The theoretical result in (123) is clear, and it has been the same message from any
other domain-average model [48]: 3D variability (here, measured by 2− α > 0) sys-
tematically enhances photon transmission through the atmosphere to the ground.
It is not however straightforward to demonstrate observationally that 3D RT ef-
fects have an impact on very large domains. Indeed, it is easy to obtain large-scale
radiances from satellites (they are essentially the raw data), but fluxes are elusive
(they call for angular conversion models). Furthermore, it is non-trivial to estimate
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what the domain-average optical depth is and that is necessary to make an inde-
pendent prediction based on 1D RT. When using satellites with large-enough pixels,
we tend to use said 1D RT models in inversion mode, which of course only gives
us the “effective” optical depth that is needed to drive the 1D RT model to give
us the observed radiance or flux.18 It is then tempting to compare this estimate
of τc with independent ground-based and in-situ estimates, and many studies have
done that. However, the space-time sampling volumes of surface and airborne sen-
sors is radically different from their space-borne counterparts. Then we can try to
convince ourselves that the obvious 3D RT effects (shadows, over-illumination, etc.)
are small-scale and of varying sign. So, upon large-scale —and moreover angular—
averaging, they will surely all but vanish. Not so!

In recent years, increasing sophistication in multi-spectral, multi-angle and/or
multi-resolution methods have shed new light on this difficult problem in cloud re-
mote sensing [38]. Interestingly, the most compelling direct observational evidence
for the impact of 3D cloud structure on large-scale atmospheric radiation processes
comes from time-domain RT [49]. This is not very surprising for the physics and en-
gineering communities which have been forever using “impulse responses” to probe
systems with complex, possibly unknown, internal structure. The α-dependence in
the asymptotic ensemble-average 3D RT result in (120) for pathlengths of transmit-
ted photons gives us a hint. The real surprise is however that this time-dependent
3D RT can be performed observationally using abundant and free solar photons
rather than power-hungry pulsed lasers.

5.2 Time-Dependent 3D RT ... with Solar Photons

Let us now open up the deterministic 3D RT problem described in (1)–(3) to time
dependence: I(x,Ω) 7→ I(t, x,Ω). The advection operator is changed accordingly:

L = Ω •∇ + σ(x) 7→ 1
c

(

∂
∂t

)

+ Ω •∇ + σ(x). (124)

Without loss of generality (because of the superposition principle), we can consider
the source term as delta-in-time: Q(x,Ω) 7→ Q(t, x,Ω) = q(x,Ω)δ(t). We note that
even in steady-state RT sources and radiances all have raw units of “per second”
because, after all, this is transport theory and particles take time to move. Here
we have a finite number of particles

∫ ∫

q(x,Ω) dxdΩ that are released all at once
and we monitor how they spread in time, until they are absorbed or have escaped
(“absorbed” by a boundary).

A deep beauty of general time-dependent transport theory is that this is not
really a new class of problems [50, 51]. Indeed, first we make the convenient change
of variables in (and of units for) I and Q: I(t, · · ·) 7→ I(L, · · ·) where pathlength
L = ct, and similarly for Q. Now we take the Laplace transform of I with respect
to path L:

Ĩ(k, · · ·) =

∞
∫

0

e−kLI(L, · · ·)dL, (125)

18 Circularity notwithstanding, this effective τc is all that is required anyway in
many climate-driven applications.
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where k is at present just the Laplace conjugate of path L (in units of m−1). We
also Laplace transform the time/path-dependent 3D RT equation: for the advection
operator in (124),

L̃ = Ω •∇ + σ(x) + k, (126)

while Q̃(k, x,Ω) = q(x,Ω). So Ĩ simply obeys a steady-state 3D RT equation with
an enhanced extinction term. Not any kind of enhancement. Specifically, because
the scattering process in (3) in unaffected, it is the absorption coefficient σa(x) in
(13) that is uniformly boosted by an amount k. Physically, this amounts to adding
to the structured 3D scattering/absorbing medium a uniform gas that only absorbs
photons at a rate of k per unit of length along any beam. This formal mapping of
the temporal Green function problem in 3D RT to a steady-state 3D RT problem
with (more) gaseous absorption —and sometimes simply (125) with the notation
I(L, · · ·) = Ĩ(0, · · ·) × p(L, · · ·) for the pathlength PDF— is called the “equivalence
theorem.”

Now suppose we are interested in computing the moments E(Ln), n = 1, 2, 3, . . .,
at some position (x,Ω) in photon phase-space. By definition, we have

E(Ln| · · ·) =

∞
∫

0

LnI(L, · · ·)dL /

∞
∫

0

I(L, · · ·)dL. (127)

From (125), we can obtain these integrals by successive orders of differentiation in
the Laplace-transformed quantities:

E(Ln| · · ·) =
1

Ĩ(0, · · ·)

(

− d
dk

)n

Ĩ(k, · · ·)
∣

∣

∣

∣

k=0

. (128)

We assume, just for simplicity at present, that the only absorption is by the well-
mixed (uniform) gas characterized by k. Then, in principle, one can derive the sta-
tistical moments of pathlength from the behavior of steady-state radiance, denoted
here by Ĩ(k, · · ·), in weak-absorption limit (k → 0). Finally, we note that (128)
carries over to any integration over the position x or angular Ω variables.

5.3 Some Recent Observations

We are extremely fortunate in atmospheric science that the above program can be
implemented thanks to the sharp spectral features of molecular oxygen that occur
near the peak (in photon number) of the solar spectrum. The spectro-radiometric
technology required for robust pathlength moment estimation has been maturing
over the past 15 or so years and so has the analysis methodology, which is not quite
as simple as in (128) because of finite spectral resolution effects, cf. Min and Har-
rison [52, 53]. Even though the phenomenology of anomalous photon diffusion from
Sect. 4.3 is not well known, there is a growing awareness that pathlength statistics
convey information about the spatial variability of clouds, cf. recent review article
by Stephens et al. [49]. Several groups have investigated mean photon pathlength
in transmission (i.e., using ground-based instruments), mostly in conjunction with
optical depth, with [14, 54] or without [55, 56] reference to the anomalous diffu-
sion/Lévy walk model. We now examine some recently published observations and
analyses.
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Figure 9 is a composite of figures from the recent paper by Scholl et al. [15]. It
shows O2-based photon pathlength observations and ancillary cloud diagnostics; I
refer the reader to the original paper for all instrumental and data analysis details.
In the upper panel we see an evolving cloud episode using a sophisticated mm-
radar profiler [57]. Over the hour-long observation period (extracted from a much
longer one), two well-defined cloud layers become gradually thinner, more tenuous,
and more disjoint. The upper layer between 9 and 10 km in altitude is a cirrus
(ice-crystal) cloud. Cirrus layers are typically highly textured (think “angel-hair”
clouds) and generally semi-opaque in the sense that sunlight cannot get directly
through but, thanks to the strongly forward-scattering phase function, one can still
see the location of the bright solar source; at the same time, cirrus layers are powerful
diffusers of sunlight. The lower cloud deck, below 2 to 1 km, starts as a dense
boundary-layer cloud, probably a strato-cumulus, that are invariably made of liquid
water droplets. It is clearly producing in-cloud drizzle and maybe even ground-level
rain between 12:14 and 12:22 Z; after that episode, it rapidly breaks up.

In the middle panel we see the mean pathlength E(LT ) of transmitted solar
photons (in units of cloud-system thickness H) plotted versus rescaled optical depth
(1 − g)τc; the pathlength statistics were derived from a high-resolution spectro-
radiometer fed by fore-optics with narrow field-of-view (0.86◦) centered on the
zenith. The theoretical curves are inspired by the power-law relation predicted in
(120). Specifically, a more detailed diffusion-theoretical formula for E(LT )/H by
Davis and Marshak [58], valid only in the standard α = 2 case but including pre-
asymptotic corrections, is

E(LT )/H =
1
2
× (1 − g)τc ×

[

1 +
ε
2

(

4 + 3ε
1 + ε

)]

(129)

where19

ε = 2χ/(1 − g)τc (130)

becomes small as τc increases without bound. Scholl et al. simply took the right-
hand side of the above expression for E(LT )/H to the power (α − 1). This ansatz
gives the correct asymptotic behavior in (120) and also a physically reasonable value
of 3χ/2, which is numerically equal to or slightly larger than unity, for τc → 0 (even
though diffusion is not a good model for transport in that limit of thin media) and
α → 1. As expected, we see the observed data pointing towards α-values for the
most part significantly less than 2. Also, the effective α value thus retrieved from
the data decreases as expected when the clouds break up.

The lower panel shows the ratio
√

E(L2
T )/E(LT ) versus (1−g)τc. We see that this

RMS-to-mean ratio for transmitted photon pathlengths is only weakly dependent on
optical thickness. This is as predicted by Davis and Marshak [58] in the α = 2 case,
cf. solid curve which is based on (129) and a like expression for the RMS pathlength
(only with a different prefactor and correction term). According to the observations,
this weak dependence seems to generalize to situations where α < 2. The 2nd-order

19 In the diffusion approximation, parameter χ in (130) arises in the (mixed) bound-
ary conditions applied to the parabolic PDE that determines photon density U
inside a uniform slab. This PDE results from combining (110) with (108) and χ#t
is the so-called “extrapolation length” [45]. Values of χ = 2/3 or χ = 0.71 have
been used, depending on the quantity of interest and the required accuracy [58].
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Fig. 9. Solar photon pathlengths and coincident cloud structure at Cabauw (the
Nederlands) on May 22, 2003, between 12:00 and 13:00 Z. (upper) Time-series of
reflectivity profiles from the up-looking KNMI 35 GHz radar [57] which is sensi-
tive to cloud droplets; three distinct periods are defined (color-coded) as the two
well-defined cloud layers thin and break up. (middle) Mean pathlength cumulated
inside the cloudy region (base of lowest cloud to top of highest) versus rescaled cloud
optical depth (1− g)τc: observations with their uncertainties and theoretical predic-
tions parameterized by α, as explained in the text. (lower) RMS-to-mean ratio for
pathlength versus (1 − g)τc: observations with their uncertainties and a theoretical
prediction for the α = 2 case, as explained in the text. (Adapted from Figs. 11–13
in [15], with permission)
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moment of transmitted solar photons was previously investigated observationally by
Min et al. [54], also thanks to enhanced instrumental capability. When comparing
pathlength mean and variance, these authors found compatibility with the Davis
and Marshak predictions for the α = 2 case but rather as an extreme situation.
However, their data was normalized and plotted differently than in the lower panel
of Fig. 9; so there does not seem to be any contradiction.

In the following, I describe a new 1D transport theory with a power-law prop-
agation kernel that accounts for all the observed properties of transmitted solar
photons.

5.4 A New 1D Theory

From the outset of this paper, we have used the standard Eulerian framework of
RT based on the 3D linear transport equation and describing all the dependent
and independent variables, the relevant coefficients, the BCs, and so on. We then
drifted towards an ever more Lagrangian outlook, describing in detail —at times
graphically— how individual photon beams interact with homogeneous and variable
optical media: propagation, scattering, and so on. We now return to an Eulerian
perspective on RT in order to formulate a more general class of 1D models inspired
by our findings on the systematic effects of 3D spatial variability on the propagation
process. This new model will of course neatly explain the new observations described
in the previous subsection.

First, we review standard 1D RT modeling when the sources are azimuthally
symmetric (equivalently, azimuthally-averaged). We thus wish to determine the ra-
diance function I(z, µ) of two variables 0 < z < H and −1 ≤ µ ≤ +1 that obeys

µ
dI
dz

= σ



−I(z, µ) +
$0

2

+1
∫

−1

p̊(µ′, µ)I(z, µ′)dµ′



 , (131)

with the following very specific BCs
{

I(0, µ) = F0/π, 0 < µ ≤ +1 (diffuse irradiance)
I(H, µ) = 0, −1 ≤ µ < 0 (vacuum)

(132)

where F0 is the incoming flux. Immediate inspection of the above problem tells us
that the usual change of variables, from physical to optical depth,

{

dz 7→ dτ = σdz, and
H 7→ τc = σH in the BCs,

(133)

is in order.20 This amounts to using the (constant) MFP # = 1/σ as the unit of
length and it is indeed one of the fundamental length scales of the problem, the
other being cloud thickness H.

In (131), we use the azimuthally-averaged phase function

p̊(µ′, µ) =
1
2π

2π
∫

0

p(µµ′ +
√

1 − µ2
√

1 − µ′2 cos φ)dφ. (134)

20 This is useful even if extinction σ and other parameters, $0 and p̊(µ′, µ), were to
depend on z.



40 Anthony B. Davis

If discrete ordinates are used, there is no need to Fourier decompose the problem
into as many decoupled 1D RT equations; only the discrete values of p̊(µ′, µ) are
required. By reciprocity, we of course have p̊(µ, µ′) = p̊(µ′, µ). If spherical harmonics
are used, then one must invoke [59]

p̊(µ′, µ) =
1
4π

∑

n≥0

(2n + 1)ηnPn(µ)Pn(µ′). (135)

In the case of the Henyey–Greenstein phase function, we recall from (31) that ηn =
gn.

To formulate the integro-differential problem in (131)–(132), we can also use the
integral form I = K∞I + I0 from (4) where

K∞(σH,$ 0, g)[·] = σ
$0

2

{

∫ H

z
dz′

∫ +1

−1
p̊g(µ′, µ)e−σ(z′−z)/|µ′|[·]dµ′/|µ′|, µ > 0

∫ z

0
dz′

∫ +1

−1
p̊g(µ′, µ)e−σ(z−z′)/|µ′|[·]dµ′/|µ′|, µ < 0

.

(136)
In the arguments of the kernel K∞ we have anticipated the usual change of variables,
from physical to optical units of depth, in (133). The BCs in (132) dictate the forcing
term,

I0(z, µ) =
F0

π
exp(−σz/µ), (137)

corresponding to diffuse irradiation at the cloud top (z = 0) and an absorbing lower
boundary (z = H). As recalled in the Introduction, this problem is formally or
computationally solved by iteration. But why the subscript “∞”?

The exponential terms in the transport kernel (136) and the uncollided flux
(137) have very specific physical meanings: we are looking respectively at the FPD
(grouping the exponential with the σ) and the probability of transmission from the
boundary to a distance s = z/µ where the first scattering (or absorption) happens.
We propose simply to replace these as follows. First, the direct transmission term
exp(−σz/µ) in (137) becomes

〈P (s)〉 = 〈Tdir〉(s; 〈σ〉, a) =
1

(1 + 〈σ〉s/a)a
(138)

from (87) with s = z/µ. Second, the FPD term σ exp(−σ|z′ − z|/|µ′|) in (136)
becomes

〈p(s)〉 =

∣

∣

∣

∣

(

d
ds

)

〈Tdir〉
∣

∣

∣

∣

(s; 〈σ〉, a) =
〈σ〉

(1 + 〈σ〉s/a)a+1
(139)

with s = |z′ − z|/|µ′|.
This leads to the more general class of 1D integral transport equation to solve

based on the kernel

Ka(〈σ〉H,$ 0, g)[ · ] = 〈σ〉$0

2
×







∫ H

z
dz′

∫ +1

−1
p̊g(µ′, µ)

(

1 + 〈σ〉(z′−z)
a|µ′|

)−(a+1)
[·]dµ′/|µ′|, µ > 0

∫ z

0
dz′

∫ +1

−1
p̊g(µ′, µ)

(

1 + 〈σ〉(z−z′)
a|µ′|

)−(a+1)
[·]dµ′/|µ′|, µ < 0

,

(140)

where a > 0. The choice of arguments again reflects that we can make the natural
change of spatial variable in (133): dz 7→ d〈τ〉 = 〈σ〉dz and H 7→ 〈τc〉 = 〈σ〉H.
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However, 〈τ〉 can no longer be interpreted as the physical depth z measured in units
of MFP because the MFP is no longer 1/〈σ〉 and is indeed systematically longer, cf.
(88). The uncollided radiance term is also changed, in this case, to

I0(z, µ) =
F0

π

(

1 +
〈σ〉z
a|µ|

)−a

, (141)

with a > 0. As previously shown, all these expressions give the proper limits for
a → ∞ as long as we identify the mean extinction 〈σ〉 with the uniform (a.k.a. in
probability as the “degenerate”) value σ.

What results are we particularly interested in? The total transmission is one of
them, namely,

Ta(〈τc〉, $0, g) =
2π
F0

1
∫

0

µI(H, µ)dµ (142)

as it measures the mean particle current through the medium. In atmospheric RT,
this is the amount of spectral radiation that reaches a dark surface, such as the
ocean. To compute the radiant energy sent immediately back to space, as well as
total flux reaching a partially reflective surface, we need the albedo

Ra(〈τc〉, $0, g) =
2π
F0

0
∫

−1

|µ|I(0, µ)dµ, (143)

In remote sensing applications, we are limited to sampling radiance in direction space
rather than obtaining the above integrals. So we shall turn our modeling interests
towards “zenith” radiance at ground level (here, z = H) and “nadir” radiance at
the top-of-the-atmosphere (here, z = 0): respectively,

I↓
a(〈τc〉, $0, g) =

πI(H, +1)
F0

(144)

and

I↑
a(〈τc〉, $0, g) =

πI(0,−1)
F0

, (145)

where we have opted for so-called “Bidirectional Reflection Function” units.21

If, beyond the above steady-state quantities (for any $0 ≤ 1), we are interested
in statistics of pathlength L (usually for the conservative case $0 = 1) then we can
apply the corollary of the equivalence theorem in (128) using the simple change of
variables $0 7→ k = (1 − $0)〈σ〉, hence

$0 = 1 − kH/〈τc〉. (146)

This means that the expression in (128) for the nth-order pathlength moments
(n = 1, 2, 3, . . .) now reads as

21 In these convenient “BRF” units, there is no difference in numerical values be-
tween albedo —or transmittance in the case of (144)— and radiance if it is
isotropic (a.k.a. Lambertian). If not, which is of course the generic case, then
we can interpret the radiance as an effective albedo or transmittance for the
particular direction of interest.
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E(Ln| · · ·)/Hn = 〈τc〉−n

[

1
I(· · ·)

(

− ∂
∂$0

)q

I(· · ·)
]

)0=1

(147)

where we have normalized the pathlengths by H and let (· · ·) represent both photon
phase-state variables (z, µ) and parameters of the optical medium (〈τc〉, $0, g). We
have also dropped the tildes and the explicit dependence on k($0) in (128) since it
is now just a parameter of the 1D RT problem.

Recall that the recipe in (147) can be applied to any of the above angularly
integrated or sampled quantities, namely, I(· · ·) 7→ Ta(·) or I↓

a(·) at z = H or else
Ra(·) or I↑

a(·) at z = 0 where (·) now represents only optical parameters. After
using (147), the H-normalized pathlength moments for boundary fluxes or z-axis
radiances will depend only on 〈τc〉 and g. The Lagrangian asymptotic analysis of
the previous section suggests this dependence should collapse onto a power-law in
(1 − g)〈τc〉 for large enough values. But what is the connection between a > 0 and
α < 2 from Sect. 4.3? Recalling that α is the critical (logarithmically divergent)
moment of the FPD, we see that

α = min{a, 2}, (148)

irrespective of the phase function’s properties (i.e., g) which can only impact low
orders of scattering.

The remaining and important question is how do we numerically solve the prob-
lem in (4) with (140) and (141)? It will be interesting to see how discrete ordinates
and spherical harmonics apply to the new class of 1D transport problems in (140)–
(141). What is clear at present is that there is an intimate connection between the
exponentials in (136)–(137) and the 1D differential equation formulation in (131)
—and this differential formalism plays a key role in obtaining some of the classic
numerical solutions [60]. There is no integro-differential equivalent of (140)–(141)
where power-law kernels appear. Expressions with pseudo-differential operators22

may exist, but this remains an open question. See Buldyrev et al. [61] for a positive
answer to this question for a related (strictly Lévy) type of propagation kernel.

If one is only interested in the boundary fluxes (142)–(143), then the easiest is
certainly to use a basic Monte Carlo algorithm. Bearing in mind the general theory
of the method, all we need to do as far as the random particle trajectory is concerned
is to replace the single line of code that executes (48) by

s = (ξ−1/a − 1) × a
〈σ〉

, (149)

where, if H and 〈τc〉 are the given quantities, we use 〈σ〉 = 〈τc〉/H. If one is only
interested in the outgoing radiances (144)–(145) then Monte Carlo is still the easiest
way to go although we will also need the probability of direct transmission to the
upper or lower boundary according to (138), with s = z and H − z respectively,
to compute weights in the local estimation technique [62]. Last but not least, the
Monte Carlo method enables direct estimation of the normalized moments in (147)
while tracing the particle trajectories under the assumption that $0 = 1.

Figure 10 shows numerical results for lower-boundary (i.e., transmission) quan-
tities for five incarnations of the 1D transport model: the standard case (a = ∞),

22 A good example is (−∇2)γ , for 0 < γ< 1 which can be implemented easily in
Fourier space in the form of a high-pass filter in k2γ .
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and 4 new cases (a = 1.2, 1.4, 1.6, 1.8) where the MFP is still finite. In all cases,
the scattering kernel p(Ω′ • Ω) was Henyey–Greenstein with g = 0.85. Panel (a)
shows Ta(〈τc〉, 1, g) versus (1 − g)〈τc〉 in log-log axes; we see that the anomalous
asymptotic scaling in (123) is indeed realized with α from (148) at large enough
〈τc〉. The same remark applies to I↓

a(〈τc〉, 1, g) in panel (b) that furthermore shows
the characteristic linear increase with optical depth at small values. A maximum in
I↓

a(〈τc〉, 1, g) is reached between (1 − g)〈τc〉 ≈ 1/3 (a = ∞) and ≈ 1 (1 < a < 2).
Panels (c) and (d) display in lin-lin axes respectively the mean and RMS-to-mean
ratio for pathlengths based on I↓

a in (147).
Where the asymptotic regime starts can be determined visually by examining

Figs. 10a–b: we see that the scaling predicted for Ta(〈τc〉, 1, g) in (123) seems to begin
at (1 − g)〈τc〉 ≈ 10 (i.e., 〈τc〉 ≈ 70 for g = 0.85) for the selected values of a = α
between 1.2 and 1.8; this threshold is practically off the chart in Fig. 10c (which was
designed to have the same span as the middle panel of Fig. 9). It is well-known —
and we clearly see— that asymptotic behavior starts much sooner for the standard
exponential kernel (a = ∞), near (1 − g)〈τc〉 ≈ 2 (i.e., 〈τc〉 ≈ 13 for g = 0.85).
We understand the delayed transition to asymptotic scaling in transmission and in
mean pathlength when a decreases from ∞ to unity as a consequence of the growth
of the optical (physical) thicknesses of the top and bottom boundary layers for fixed
〈τc〉 (H and 〈σ〉). Indeed, according to (88) and (106), the relevant transport MFP
is

#t(a) =
〈E(s)〉

1 − $0g
=

a
a − 1

× H
(1 − $0g)〈τc〉

, (150)

a natural estimate for the boundary layer thickness, that increases without bound
as a → 1. As a gets close to unity, the two boundary layers have invaded the whole
domain; physically, the presence of the boundaries can be felt at all levels in the
medium because of the long tail of the propagation kernel in (139). If we retain
the often quoted criterion [63], from the a = ∞ case, for the onset of asymptotic
behavior,

2 × #t(∞)
H

=
2

(1 − $0g)〈τc〉
! 1, (151)

then here we have:

(1 − $0g)〈τc〉 "
2a

a − 1
(152)

which ranges from 4 to 12 for 1.2 ≤ a ≤ 1.8, more-or-less as observed in the numerical
simulations.

On purpose, Fig. 10c for E(L)/H versus (1− g)〈τc〉 mimics the display of obser-
vations in the middle panel of Fig. 9. We see that, although they are not plotted, the
data points populate a region where we will find transport models with 2 < a < ∞.
Such models have the same asymptotic scaling as the α = 2 case, but its onset as
optical depth increases is delayed beyond an already quite large value estimated by
Davis and Marshak [58] to be ≈10 for (1 − g)τc. Consequently, it is now clear that

1. the observations of Scholl et al. are mostly not in the asymptotic transport
regime, and

2. a model such as the present 1D integral transport equation that accounts for
pre-asymptotic behavior is required to further exploit atmospheric A-band data.

Our final Fig. 10d shows the same RMS-to-mean ratio as in the lower panel of
Fig. 9 on the same vertical and horizontal scales. We see that the new model explains
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Fig. 10. Results from Monte Carlo solutions of the new 1D integral transport equa-
tion in (4) using (140)–(141) with $0 = 1 and g = 0.85. (a) Log-log plot of transmis-
sion in (142) as a function of (1−g)〈τc〉 for a = 1.2, 1.4, 1.6, 1.8, and ∞. (b) Same as
(a) but for zenith radiance in (144). In both panels, we see the predicted scaling in
〈τc〉−α/2 for large enough values. (c) Lin-lin plot of E(L)/H from (147) with n = 1
using I↓

a where we see the predicted scaling in 〈τc〉α−1 for large values; by comparison
with the middle panel of Fig. 9, we also note that the observations point to a-values
between 2 and some relatively large value rather than α-values per se smaller than
2. (d) Same as (c) but for

√

E(L2)/E(L) where we confirm the recent observa-
tion that the RMS path scales like the mean independently of a or α, cf. Fig. 9.

Numerical Details: The MFP 〈#〉 = a/(a − 1)〈σ〉 was set to unity and 11 physical
thicknesses were examined: H = 2−2,...,8. This was done in a single run for a given
value of a, by flagging the history as to which of the 11 media it had not yet escaped.
The mean optical thickness 〈τc〉 = 〈σ〉H was computed after the fact from a and H.
For each run, 5×106 histories were generated. This resulted in a maximum of 23249,
26317, 24997, 31306, and 44953 scatterings respectively for a = 1.2, 1.4, 1.6, 1.8, and
∞ in the case where H = 256 × 〈#〉.
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well the weak dependence on optical depth with furthermore the right trends in both
a and 〈τc〉. However, we must emphasize here that the choice of upper BC in (132)
that expresses diffuse isotropic illumination (equivalently, the source terms (137)
and (141)) is important to obtain the observed trend at small optical depths. This
makes physical sense because the upper level of “cloud” is, by definition, a strong
diffuser.23

This last finding sheds new light on the phenomenology of particle transport
with power-law FPDs presented in Sect. 4.3. That approach was entirely predicated
on a judicious truncation of the universal law that describes the distribution along
orders-of-scattering of particles reflected from a semi-infinite isotropically scattering
medium. The tight connection we found numerically between

√

E(L2) and E(L)
tells is that this truncation has to be a very sharp one indeed, irrespective of the
finite optical thickness of the medium. Otherwise, significant numbers of straggling
particles would affect the higher-order moments.

6 Concluding Remarks

We have investigated the impact of unresolved spatial variability on linear particle
transport systems at the most fundamental level (i.e., incoherent geometric optics
in the case of our primary application to atmospheric radiative transfer). The ele-
mentary process of interest here is propagation between an emission or scattering
event and the next scattering event or an absorption/escape. In uniform regions
—a tempting assumption to make when structure is unknown— this propagation
is controlled by an exponential decay in particle flux along a given beam (the well-
known Beer’s law in radiative transfer). Concurring with other authors, I showed
that on average this decay is in fact sub-exponential in random but spatially cor-
related media. This is established using both transport-theoretical methods and a
somewhat deeper point-process approach pioneered by A. Kostinski and coworkers.
Furthermore, the actual mean-free-path is systematically larger than predicted with
a uniform-medium assumption based on mass conservation. Finally, for the predicted
extension of the mean-free-path and systematic deviation from exponential decay
to matter, there needs to be spatial correlations at scales commensurate with the
(actual) mean-free-path.

Two important consequences are:

• Generally speaking, homogenization (or “effective medium”) theory can capture
the extended mean-free-path effect but, being limited to exponential kernels, it
will fail to capture other effects at scales much larger (and also much smaller)
than the mean-free-path.

• For applications to the Earth’s cloudy atmosphere, the observed optical variabil-
ity, which indeed has long-range correlations shaped by small- and large-scale
turbulence, leads to propagation kernels with power-law tails.

23 An improved upper BC would capture the fact that some of the sunlight is trans-
mitted quasi-ballistically through the top layer, but this would call for at least
two new parameters (solar zenith angle and the partition between diffuse and
collimated illumination).
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I also critically re-examined the impact of sub-exponential free-path distributions
on multiple scattering in finite media. Guided by early successes of a phenomeno-
logical model for solar photon propagation through the cloudy atmosphere based
on Lévy (rather than Gaussian) random walks, I proposed here a new 1D transport
model with propagation kernels having power-law tails as well as the proper near-
field behavior. These kernels are particularly well adapted to problems of large-scale
radiative transfer in the cloudy atmosphere since they follow directly from the ob-
served Gamma-type distributions of optical variability. This new transport equation
is solved numerically using a modified Monte Carlo scheme. The new model explains
all the features of recent observations of the mean and RMS pathlengths of solar
photons eventually transmitted to the ground in a narrow field-of-view around the
zenith direction. In particular, we conclude that large-scale radiation transport in
the cloudy atmosphere is in a pre-asymptotic regime where the thickness of the ra-
diative boundary-layer (a couple of actual mean-free-paths) is commensurate with
the outer thickness of the medium (from ground level to the top of the highest
cloud).

In general, the new transport model based on effective propagation kernels offers
a flexible intermediate approach to the perennial problem of unresolved variability.
It is not as simple as homogenization, but it does avoid its main limitation. Nor is it
as complicated as the coupled mean-field transport equations for random Markovian
media, even in the two-state case. So one hopes to see applications in a wide variety
of transport problems in both engineering and natural sciences.
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