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Abstract. Means, standard deviations, homogeneity param-
eters used in models based on their ratio, and the probabil-
ity distribution functions (PDFs) of cloud properties from
the MODerate resolution Infrared Spectrometer (MODIS)
are estimated globally as function of averaging scale vary-
ing from 5 to 500 km. The properties – cloud fraction,
droplet effective radius, and liquid water path – all matter
for cloud-climate uncertainty quantification and reduction ef-
forts. Global means and standard deviations are confirmed to
change with scale. For the range of scales considered, global
means vary only within 3% for cloud fraction, 7% for liq-
uid water path, and 0.2% for cloud particle effective radius.
These scale dependences contribute to the uncertainties in
their global budgets. Scale dependence for standard devia-
tions and generalized flatness are compared to predictions for
turbulent systems. Analytical expressions are identified that
fit best to each observed PDF. While the best analytical PDF
fit to each variable differs,all PDFs are well described by
log-normal PDFs when the mean is normalized by the stan-
dard deviation inside each averaging domain. Importantly,
log-normal distributions yield significantly better fits to the
observations than gaussians at all scales. This suggests a pos-
sible approach for both sub-grid and unified stochastic mod-
eling of these variables at all scales. The results also high-
light the need to establish an adequate spatial resolution for
two-stream radiative studies of cloud-climate interactions.
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1 Introduction

Cloud impacts on the energy and water cycles remain an
important source of uncertainty in our understanding of cli-
mate. This applies to the simplest low-dimensional energy
balance models (Budyko, 1969; Sellers, 1969; Pujol, 2003),
climate sensitivity analyses (e.g.Roe and Baker, 2007; Han-
nart et al., 2009), two-scale stochastic models (e.g.Imkeller
and v. Storch, 2001; Dı́az et al., 2009), and to state of the
art Global Circulation Models (GCMs) incorporated into
the Intergovernmental Panel on Climate Change assessments
(Solomon, 2007). The inherent turbulence of atmospheric
flows prevents observations and models from capturing the
constantly evolving structure of clouds in the atmosphere.
This complexity limits our confidence in predictions of cloud
properties and therefore of climate sensitivity. Observed
cloud properties have biases dependent on sensor- (e.g.Boers
et al., 2006; Horváth and Davies, 2007; Bennartz, 2007) and
cloud-types (de la Torre Júarez et al., 2009) that may be
smaller than those resulting from limited sampling of highly
variable fields (Schutgens and Roebeling, 2009). Therefore,
one approach to understand the radiative impact of clouds on
climate is to determine the robust statistical distributions of
cloud properties rather than solving exactly for each specific
cloud field. Although it is widely recognized that there is
no justification for assuming gaussian distributions (Hannart
et al., 2009), analyses of atmospheric flows and climate often
quantify cloud-climate dynamics and uncertainties by inter-
preting means, standard deviations and confidence levels in
gaussian frameworks (e.g.Roe and Baker, 2007). Identifying
more realistic distributions gives more credible depictions of
observational results, better subgrid parameterizations, and
a more rigorous approach to quantifying cloud and climate
modeling uncertainties.
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Fig. 1. Cloud fraction (CF), cloud droplet effective radius (reff ) and cloud liquid water path (LWP) for high

and low clouds W and NW of the Canary Islands at spatial resolutions of 5 km, 25 km and 100 km. Different

spatial resolutions suggest different statistics of cloud properties.
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Fig. 1. Cloud fraction (CF), cloud droplet effective radius (reff) and cloud liquid water path (LWP) for high and low clouds W and NW
of the Canary Islands at spatial resolutions of 5 km, 25 km and 100 km. The lower left-hand panel is a 1 km resolution with a three-color
rendering of the scene using three MODIS L1B bands: Band 3 (459–479 nm), Band 4 (545–565 nm), and Band 5 (1230–1250 nm). The
figure emphasizes the multi-layered nature of the cloudiness. Different spatial resolutions suggest different statistics of cloud properties.

Questions also remain open about climate impacts of pro-
cesses unfolding at the relatively small scales of the clouds
themselves. The spatio-temporal scales at which cloud for-
mation, precipitation, and interactions with aerosols occur
are largely unresolved by satellite instruments, yet these phe-
nomena determine large-scale properties of clouds relevant
to the atmosphere’s radiative balance. The ability to charac-
terize statistically a large range of scales can reveal dynam-
ical interactions across scales, and, possibly, to extrapolate
these to the small unresolved ones, thus providing relevant
validation data for cloud-process models.

Comparisons of trade cumulus cloud fraction statistics
over the tropical Western Atlantic at pixel resolutions from
the 15-m to the kilometer scale show significant scale-
dependence (e.g.Dey et al., 2008). Similar scale-dependence
was found in early data-driven stochastic simulations of
cloud fields (Shenk and Salomonson, 1972), in observed
outgoing longwave radiation in high tropical Pacific clouds
(Pierrehumbert, 1996), in albedo from optical depths (Ore-
opoulos and Davies, 1998), in global cloud optical thick-
ness, emissivity and cloud top temperature (Barker et al.,
1996; Rossow et al., 2002), and in liquid water path of low-
level marine clouds over the Pacific (Wood and Hartmann,
2006). These studies showed that different averaging scales
result in apparent biases between instruments, and between

instruments and models. This effect is illustrated in Fig. 1
where cloud properties are shown at different resolution
scales of 5 km, 25 km and 100 km for the same cloud scene.
Yet analyses of global cloud variables and climate proper-
ties occur typically at far coarser scales. For instance, the
global radiative budget of the atmosphere has been studied at
10◦

× 10◦ (e.g. Forster and Gregory, 2006); satellite-based
observational studies of the hydrological cycle are found at
resolutions of 1◦ × 1◦ (Schlosser and Houser, 2007); stud-
ies of the global radiative balance from weather analyses are
often at resolutions of 2.5◦ × 2.5◦ (Trenberth et al., 2003);
global effects of aerosols on clouds driven by micro-scale in-
teractions are modeled at 5◦

× 5◦ and 2.5◦ × 2.5◦ resolutions
(Quaas et al., 2009, and references therein). At the other end
of the spectrum, some satellites such as LandSat can pro-
vide cloud information at scales of a few meters (Dey et al.,
2008), and airborne instruments measure cloud properties at
even smaller scales.

This paper compares satellite-based inferences of a set of
cloud properties relevant to cloud-climate interactions, and
looks for the best fit analytical probability distribution func-
tions (PDFs). The properties are: Cloud Fraction (CF),
which modulates the amount of radiation reaching the sur-
face and how much is reflected back into space; cloud liq-
uid water path (LWP), which acts as a powerful barrier
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Fig. 2. (a–c)Symbols show the observed values at different spatial averaging scales. Solid lines are the designated least-squares fits. All
PDFs for all variables are non-symmetric. LWP andreff have respectively log-normal and exponential tails that capture the infrequent high
values. (d–f) Mean absolute deviations between the observed global CF(d), LWP (e), reff (f) and the analytical PDFs after a nonlinear
least-squares fit.

of outgoing radiation; and cloud particle effective radius
(reff), which modulates the radiative absorption properties
of clouds and the Earth’s albedo. LWP is derived fromreff
and cloud optical depth,τ , through LWP∝ ρwτreff, with ρw
the condensed water density (Platnick et al., 2003). Analyti-
cal PDFs fitted here, besides gaussians, have been proposed
before: beta for CF (Falls, 1974), Gamma for LWP andτ
(Newman et al., 1995; Barker et al., 1996), and log-normal
for turbulent processes (Monin and Yaglom, 1975). PDFs are
for global CF,reff and LWP, and means and standard devia-
tions are estimated at resolutions from 5 to 500 km using Col-
lection 5 retrievals from the MODerate resolution Infrared
Spectrometer (MODIS) aboard the AQUA spacecraft (King
et al., 2006).

We quantify the scale-dependence of statistical moments
and compare them to predictions of generalized flatness scal-
ing for self-similar homogeneous turbulent flows (Monin and
Yaglom, 1975; Frisch, 1995). Quantitative empirical evi-
dence for the turbulent nature of clouds from a space-based
perspective goes at least back toLovejoy (1982), who in-
voked fractal geometry, and continues to come using multi-
fractal statistics (Lovejoy et al., 2009). To the best of our
knowledge, previous studies of satellite observations have
used raw (Level-1/radiance) data, and gradients thereof in
the case of multifractal analysis, while here we use retrieved

(standard Level-2) cloud properties. It is reassuring (Davis
et al., 1994) to see that, in spite of all the assumptions used
to process radiances into standard cloud products, the signa-
ture of turbulence is still clear and can be represented simply
enough for practical parameterization of cloud processes in
climate models.

2 Analytical PDFs at different scales

Figure 2a–c shows global PDFs for CF,reff, and LWP ob-
served over 10 equinox days in 2003 to 2007 at seven spa-
tial resolutions. Equinox days minimize possible seasonal
biases while handling the large amount of high spatial resolu-
tion data needed to cover a significant number of years. The
data are from five-minute granules of MODIS-AQUA day-
time observations. A granule covers about 1354× 2030 km2

and is treated as if it were a “realization” of a cloud exper-
iment. Cloud fraction was considered where CF and Cloud
Top Pressure (CTP) were flagged as useable. LWP andreff
are for the same clouds if the LWP is flagged by MODIS as
useable. CTP flags were checked to limit the differences in
cloud populations from this study to those that discriminate
cloud heights. Data confidence levels were allowed to be
marginal, good and very good. This assumes that marginal
retrievals can return instantaneously incorrect but plausible
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values. Cloud properties (CF, LWP,reff, CTP) were calcu-
lated by averaging each variable over basic spatial domains,
that we will call “pixels”, of side lengthL and then calcu-
lating the global average and standard deviation of all those
local means for each granule. We used seven different pixel
resolutions:L = 5, 10, 25, 50, 100, 250, and 500 km. No con-
straints were set on the percentage of valid retrievals in each
scene, their CTP, or if the clouds were over land or ocean.
The resulting number of 5-min granules for these 10 days
were 2880 realizations. Analytical PDFs were fitted at all
spatial resolutions to the observed CF, LWP andreff distri-
butions using a non-linear least-squares approach with two
fitting parameters related to the mean and standard deviation.

As expected (Falls, 1974), the observed bimodal PDF of
CF is best fit to a beta distribution. Bimodal beta functions
could be found that fit to the bimodal observations (see sym-
bols accumulating at CF = 0 and CF = 1 in Fig. 2a), but the
better fit to our dataset occured at the parameters for a non-
bimodal beta distribution (solid lines in Fig. 2a). The CF is
the 5 km resolution MODIS cloud product where the only
possible values are 1 and 0 (overcast or clear). Because our
gridding is fixed to location and cloud structures are not, an
observed 5-km cloud structure may touch over one, two, or
up to four 5-km grid cells and appear as two cells with a
CF = 0.5 or four contiguous cells with CF = 0.25. The im-
pact of this effect is visible in Fig. 2a where some CF values
at 5 km are 0.5, 0.25 and 0.75. Figure 2a also shows that
such cases are few and have little statistical impact. As the
spatial resolution is degraded, this effect may still happen
at the perimeter of the larger cells but their proportion and
statistical impact compared to those within a larger area de-
cays with increasingL. As the spatial resolution is degraded,
Fig. 2a shows that a continuum of values emerges through
averaging clear and overcast scenes onto one mean value.
At the coarser resolutions of 250 km and above, the higher
peak shifts from 1 towards 0.9. This scale-dependent behav-
ior of CF is consistent with that found for clear scenes using
the MODIS 1-km cloud mask (Krijger et al., 2007) where
confidence levels (confident cloudy, probably cloudy, proba-
bly clear, confident clear) were translated into percentages of
clear sky at 1 km and lower spatial resolutions.

Unlike CF, LWP andreff have a (theoretically) unbounded
range of values. Both show skewed, hence non-gaussian,
distributions in Fig. 2. Figure 2d–f compares the minimum
absolute deviation between observed PDF and least mean
squares fit to a beta, gamma, log-normal, and gaussian dis-
tributions at the different pixel sizes to find that the log-
normal, a popular choice in turbulence studies, is a better
choice for LWP at resolutions finer than 100× 100 km2, and
the Gamma function is better at coarser resolutions (Fig. 2e).
Gamma PDFs provide the best fit toreff at all scales (Fig. 2f),
which is consistent with howreff depends on cloud droplet
radius (Pointikis and Hicks, 1992) and how droplet radius
follows Weibull/Gamma distributions (Liu and Hallet, 1998).
Figures 2e and f show that the peak (mode) and tails of LWP

and reff PDFs change with spatial resolution. Large devi-
ations determine the tails on LWP andreff distributions in
these figures. As the spatial resolution is decreased, the aver-
ages over larger areas blur these extreme values. As a result,
the distributions at coarser resolutions appear more symmet-
ric, the means shift closer to the peaks of the distributions
and the tails shorten.

3 Scale dependence of statistical moments

Figure 3 shows the scale dependence of global (from all gran-
ules in our study) statistical moments for pixel averaged,
LWP andreff. The moments in Fig. 3 all change as a func-
tion of scale. The normalized mean, a frequent diagnostic
in turbulence studies is also shown. It is the inverse of the
global “relative dispersion” inPointikis and Hicks(1992);
and the square root of the global “homogeneity parameter”
in Wood and Hartmann(2006). The normalized mean en-
ables to compare the relevance of the scale-dependence for
variables with different values. Numerical values in Table 1
show mean CF and LWP more scale-dependent thanreff. At
the same time, the normalized mean (and the dispersion) for
reff changes over a factor two.

Kostinski and Shaw(2001) argued that cloud particle ag-
gregations at microphysics scales obey statistics similar to
those of binary-valued fields with auto-correlation functions
decaying as scale increases. An exponential decay reveals
a discrete Poisson distribution of cloudy-clear interfaces. If
CF is decorrelated at 5 km (as inSchutgens and Roebeling,
2009), then consecutive sampling of CF from uncorrelated
pixels is analogous to a temporal sampling of a random bi-
nary (cloudy-clear) outcome, time being proportional to the
number of pixels sampled. Therefore, if CF statistics follow
such Poisson-type rules and self-similarity holds up to 5-km
resolution, the absolute deviation would approach the mean
value. This is not seen in Fig. 3a where mean CF over its
standard deviation decreases with increasing pixel size but
remains above unity for all the range 5 to 500 km.

Normalized mean LWP approaches unity at the
100× 100 km2 pixel size, despite LWP not being a bi-
modal distribution. A possible explanation could come from
arguments similar to those from turbulence theory (Frisch,
1995) where the scale-dependence of statistical moments for
a zero-centered variable,X, gives information about how
its variance is transferred across scales in turbulent flows.
FollowingJiménez(2007), we define a generalized structure
function of ordern as: SX(n) =

∫
XnP(X)dX, P(X) being

its PDF.SX(n) is used to define a generalized flatness factor
as YX(n) = SX(n)/SX(2)n/2. Kolmogorov’s self-similarity
hypothesis for homogeneous turbulence (X is velocity v)
leads to the scaling lawSv(n) ∼ Ln/3, at least for lown, and
thus Yv(n) is independent ofL. Note that the normalized
LWP means in Fig. 3b are
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Fig. 2. (a–c) Symbols show the observed values at different spatial averaging scales. Solid lines are the des-

ignated least-squares fits. All PDFs for all variables are non-symmetric. LWP andreff have respectively log-
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(green) for CF, LWP andreff. The double brackets� ··· � stand for “global/ensemble average of local means (at a specific scale)”. The
primed quantities on the green y-axis refer to deviations from the global average value.

Table 1. Observed means, standard deviations and dispersions (inverse of the normalized means) in the panels of Fig. 3. Parentheses show
the %-difference of every mean from the mean of all means, i.e., the global average.

Variable Moment 5 km 10 km 25 km 50 km 100 km 250 km 500 km

Mean – – 0.82 (0.8%) 0.81 (−1.1%) 0.80 (−1.4%) 0.82 (0.1%) 0.83
CF Standard – – 0.12 0.17 0.20 0.24 0.26

Dispersion – – 0.15 0.21 0.25 0.29 0.32

Mean 135.28 (−0.7%) 134.20 (−1.5%) 133.00 (−2.4%) 133.18 (−2.3%) 134.79 (−1.1%) 140.38 (3.0%) 143.22 (5.1%)
LWP (g m−2) Standard 42.8 58.8 78.5 91.5 103.7 122.3 136.2

Dispersion 0.32 0.44 0.59 0.69 0.77 0.87 0.95

Mean 19.54 (0.1%) 19.57 (0.1%) 19.57 (0.1%) 19.57 (0.0%) 19.54 (−0.1%) 19.52 (−0.1%) 19.51 (−0.1%)
reff (µm) Standard 2.75 3.57 4.50 5.08 5.59 6.21 6.70

Dispersion 0.14 0.18 0.23 0.26 0.29 0.32 0.34

YLWP(1) =
〈〈LWP〉〉global

〈〈LWP〉2−〈〈LWP〉〉
2
global〉

1/2
global

(1)

and note that in turbulenceX is a centered (zero-mean) ran-
dom variable. The scaling in Fig. 3b for LWP at pixel sizes of
100× 100 km2 and larger is then consistent with that of self-
similar turbulent structure functions for flows in the inertial
subrange.

The observedYCF(1) and Yreff(1) do not converge to
unity in Fig. 3a, but approach a linear law in the inverse
pixel side length, 1/L. A linear fit, ỸCF = 3.03+88.21/L
was found with mean absolute deviation1CF = 100×〈|1−

ỸCF(1)/YCF|〉 = 0.9%. Similar fits to the global normalized
means for LWP andreff yield ỸLWP = 1.18+ 10.26/L and
Ỹreff = 3.25+20.17/L respectively, with larger mean abso-
lute deviations1LWP ≈ 1reff = 5.5%. As expected from a
turbulence perspective, global means change far less than
standard deviations when looking for power laws inL.
Specifically, we find〈CF〉 = 0.8L0.004(1 = 1%), 〈LWP〉 =

124L0.013(1 = 1.6%), and〈reff〉 = 19.6L−0.001(1 = 0.1%),
while 〈CF′2

〉
1/2

= 0.06L0.24(1 = 5.6%) 〈LWP′2
〉
1/2

=

33L0.24(1 = 6.6%), 〈r ′2
eff〉

1/2
= 2.3L0.18(1 = 6.1%), which

approachL1/4.

4 PDFs of locally normalized means

In essence, Fig. 4 shows statistics of statistics as a function
of scale. The PDFs are for means over each pixel normal-
ized locally by the standard deviation over all observations
within the pixel. Because CF is given at 5× 5 km2, a min-
imum of 25× 25 km2 is necessary for the CF pixels to ac-
cumulate some significant standard deviation. The notable
finding is that, while the global PDFs of CF, LWP, andreff
display different functional forms in Fig. 2, the global PDFs
of locally normalized means have a very similar shape for all
variables and all are fitted best by log-normal distributions.
Notice that the PDFs have been displayed in log-scales mak-
ing the tails more visible and, as is often seen in turbulence,
they appear to be power-law. However, they contribute lit-
tle to the absolute deviation from the fit when weighted by
their frequency of occurrence. Indeed, weighting the abso-
lute deviations by the observed value (thin lines in Fig. 5a–c)
measures the deviation from the functional shape, and this
shows that the log-normal remains best for LWP andreff at
all domain sizes and it worsens for CF at resolutions finer
than 250× 250 km2.
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Fig. 4. A different look into cloud property PDFs: means normalized by standard deviations as a function of

scale.

means for LWP andreff yield ỸLWP = 1.18 + 10.26/L andỸreff
= 3.25 + 20.17/L respectively,160

with larger mean absolute deviations∆LWP ≈ ∆reff
= 5.5%. As expected from a turbulence

perspective, global means change far less than standard deviations when looking for power laws

in L. Specifically, we find〈CF〉 = 0.8L0.004(∆ = 1%), 〈LWP〉 = 124L0.013(∆ = 1.6%), and

〈reff〉 = 19.6L−0.001(∆ = 0.1%), while 〈CF’2〉1/2 = 0.06L0.24(∆ = 5.6%) 〈LWP’2〉1/2 =

33L0.24(∆ = 6.6%), 〈r′2eff〉
1/2 = 2.3L0.18(∆ = 6.1%), which approachL1/4.165

4 PDFs of locally normalized means

In essence, Fig. 4 shows statistics of statistics as a function of scale. The PDFs are for means

over each pixel normalized locally by the standard deviation over all observations within the pixel.

Because CF is given at 5×5 km2, a minimum of 25×25 km2 is necessary for the CF pixels to ac-

cumulate some significant standard deviation. The notable finding is that, while the global PDFs of170

CF, LWP, andreff display different functional forms in Fig. 2, the global PDFs of locally normalized

means have a very similar shape for all variables and all are fitted best by log-normal distributions.

Notice that the PDFs have been displayed in log-scales making the tails more visible and, as is often

seen in turbulence, they appear to be power-law. However, they contribute little to the absolute de-

viation from the fit when weighted by their frequency of occurrence. Indeed, weighting the absolute175

deviations by the observed value (thin lines in Fig. 5 a–c) measures the deviation from the functional

shape, and this shows that the log-normal remains best for LWPandreff at all domain sizes and it

worsens for CF at resolutions finer than 250×250 km2.

5 Summary and conclusions

Notwithstanding MODIS measurement errors (Boers et al., 2006; Horv́ath and Davies, 2007; Ben-180

nartz, 2007; de la Torre Juárez et al., 2009) and those biases caused by incomplete sampling of
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Fig. 5. Mean absolute deviations between the observed and the analytical PDFs in thick lines; thin lines show

the mean absolute deviation between fit and observations when weighted bythe inverse of the observed PDF at

each point.

highly variable fields (Oreopoulos et al., 2009; Schutgens and Roebeling, 2009), this study has inter-

compared a set of analytical functions that best fit the observed PDFs of global macroscopic cloud

properties across a large range of scales. Observed cloud fraction is best approached by beta distribu-

tions, droplet effective radius by a Gamma PDF, and liquid water path follows closely a log-normal185

or a Gamma distribution. Gaussian PDFs are never the best description.

The global normalized mean CF decreases linearly with the sizeL of the local averaging domain

down to about 100×100 km2 areas, at which point it trends upward to a resolution of 500×500 km2.

Average LWP changes little from 10×10 km2 to 100×100 km2 where it starts increasing linearly

with 1/L. Globally averagedreff seems to be independent of the spatial resolution. A scale-190

independent averagereff is consistent with predictions of a droplet size saturationscale based on

entropy maximizing size distributions of cloud droplets (Liu et al., 2002) in a turbulent atmosphere.

However, normalized means ofreff change more significantly, with a linear dependence on1/L

and this is a factor to take into account when modeling cloud distributions using a homogeneity

parameter.195

The mode of the finer resolution CF and the coarser LWP distributions approach unity, which is

consistent with the domain-level statistics following self-similar scaling:YLWP(1) ∼ constant, as

described earlier, in analogy with turbulence theory and observations of zero-centered variables. This

similarity raises the possibility of applying some of the general scaling arguments used in turbulent
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and other approaches discussed in the context of turbulent flows (e.g. Frisch, 1995, chapter 8) rely

only on how characteristic time scales and objects sizes affect the structure functions at different

averaging lengths. Exploring such random scaling models isof interest but would require testing

predictions for higher order structure functions and moments and becomes a task for future efforts.

Other results include a test for possible connections to self-similar Poissonian statistics for CF,205

which fails at 5 km and above. Finally, on the scale dependence, power laws are found for means

as a function of pixel size and they behave differently from standard deviations, with CF and LWP

9

Fig. 5. Mean absolute deviations between the observed and the analytical PDFs in thick lines; thin lines show the mean absolute deviation
between fit and observations when weighted by the inverse of the observed PDF at each point.

5 Summary and conclusions

Notwithstanding MODIS measurement errors (Boers et al.,
2006; Horváth and Davies, 2007; Bennartz, 2007; de la
Torre Júarez et al., 2009) and those biases caused by incom-
plete sampling of highly variable fields (Oreopoulos et al.,
2009; Schutgens and Roebeling, 2009), this study has inter-
compared a set of analytical functions that best fit the ob-
served PDFs of global macroscopic cloud properties across
a large range of scales. Observed cloud fraction is best ap-
proached by beta distributions, droplet effective radius by a
Gamma PDF, and liquid water path follows closely a log-
normal or a Gamma distribution. Gaussian PDFs are never
the best description.

The global normalized mean CF decreases linearly with
the sizeL of the local averaging domain down to about
100× 100 km2 areas, at which point it trends upward to a
resolution of 500× 500 km2. Average LWP changes little
from 10× 10 km2 to 100× 100 km2 where it starts increas-
ing linearly with 1/L. Globally averagedreff seems to be
independent of the spatial resolution. A scale-independent
averagereff is consistent with predictions of a droplet size
saturation scale based on entropy maximizing size distribu-

tions of cloud droplets (Liu et al., 2002) in a turbulent at-
mosphere. However, normalized means ofreff change more
significantly, with a linear dependence on 1/L and this is a
factor to take into account when modeling cloud distributions
using a homogeneity parameter.

The mode of the finer resolution CF and the coarser
LWP distributions approach unity, which is consistent with
the domain-level statistics following self-similar scaling:
YLWP(1) ∼ constant, as described earlier, in analogy with
turbulence theory and observations of zero-centered vari-
ables. This similarity raises the possibility of applying some
of the general scaling arguments used in turbulent flows to
describe LWP scale dependence. Notice that, for instance,
the beta-model, multifractal, and other approaches discussed
in the context of turbulent flows (e.g.Frisch, 1995, chap-
ter 8) rely only on how characteristic time scales and ob-
jects sizes affect the structure functions at different averaging
lengths. Exploring such random scaling models is of interest
but would require testing predictions for higher order struc-
ture functions and moments and becomes a task for future
efforts.

Other results include a test for possible connections to self-
similar Poissonian statistics for CF, which fails at 5 km and
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Fig. 6. PDFs for LWP andreff in logarithmic scale highlight the increasing LWP anomaly at the low end of the log-normal distribution.

above. Finally, on the scale dependence, power laws are
found for means as a function of pixel size and they behave
differently from standard deviations, with CF and LWP stan-
dard deviations approachingL1/4, as is familiar in turbulent
flows.

Shell-models of turbulence and the entropy maximization
models ofreff describe PDFs at the micro-scale, a link still
needs to be established to scales more relevant for climate
and cloud-process models used in this work,∼km and above.
Scale-by-scale analysis provides a step in that direction. For
instance, the cloud droplet radius models ofLiu and Daum
(2000) provide a probabilityp(r), which leads to an ef-
fective radiusreff = 〈r3

〉/〈r2
〉 =

∫
r3p(r)dr/

∫
r2p(r)dr. In

their model,reff ∼ α(LWC/N)1/3 where LWC is the liquid
water content (i.e., LWP/cloud thickness in stratus),N the
total droplet number concentration in a parcel of air, andα a
parameter related to the heterogeneity of the sampled cloud
parcel. Our study, which provides the global scale-dependent
probability distributions, presents PDFL(reff) where L is
scale and the random variable is the MODIS pixel-scale re-
trieved effective radius averaged over scaleL, which we can
interpret as PDFL[α(LWC/N)1/3

] with the same averaging.
PDFL(reff) becomes a measure of the fluctuations of the pa-
rameters in the micro-scale probability distributionsα and
LWC/N , which will depend on the type(s) of cloud present
in an area of sidelengthL.

We have presented the means and PDFs of locally nor-
malized mean CF, LWP andreff (mean over standard devi-
ation inside pixels of a given size) that measure the hetero-
geneity of clouds within each pixel and found that they fol-
low a scale-dependent log-normal distribution for all three
variables, thus providing a possible unified description of
these cloud properties at all scales in climate model parame-
terizations of sub-grid processes. Still, the normalized PDFs
have tails associated with extreme values and unusually low
variability missed by the closest log-normal or Gamma. If a

relative weighting is used to measure the distance from the
empirical histogram shape, the normalized CF at resolutions
higher than 250× 250 km2 is better approached by a Gamma
distribution.

The scale dependence of cloud variability highlights that
care is needed to choose a spatial resolution for analyses of
global cloud-radiative effects.Rossow et al.(2002) argue
that significant horizontal radiative transfer at scales below
3 km justify considering cloud properties at scales only above
3 km for global analyses based on two-stream (up-down) ra-
diative models. This hypothesis may be tested by looking at
the radiative impacts of clouds with different sizes and cloud
fractions at small scales. Since MODIS CF andτ statis-
tics over 5× 5 km2 regions are expected to differ little from
the values at 3 km (Dey et al., 2008), 5 km would be a good
choice for such a future analysis.

Another effect observed in in this study and highlighted in
Fig. 6 is that lower LWP values deviate significantly from the
log-normal distribution values as pixel resolution is graded.
The oposite effect is observed onreff. This departure on
LWP from the analytical distribution captures the relative
frequency of scenes with medium and thin clouds becoming
stronger whenL >50 km2, but their influence on the global
mean LWP is masked by the contribution by the tail with ex-
tremely high LWP values that seem to dominate the global
average and shift it towards higher means atL > 100 km2.
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