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Richardson Two-Particle Diffusion

Volcanic ash plume over Kilauea volcano

Meteorologist, physicist and applied mathe-
matician Lewis Fry Richardson proposed in
1926 that particle-pairs advected by turbu-
lence (e.g. a pair of soot particles in a volcanic
plume) would have mean-square separation in-
creasing with time as the cube power

(Jx1(t) — x2(t)|?) ~ .

This is Richardson’s t3-law.



Scale-Dependent Eddy-Diffusivity
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K from molecular diffusion of oxygen into nitrogen (Kaye
and Laby’s ‘Physical and Chemical Constants’).
For 1 see preceding discussion.
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K atb 9 metres above ground from anemometers at heights
of 2, 16 and 32 metres (W. Schmidt, ¢ Wien. Akad.
Sitzb.,” Ila, vol. 126, p. 773 (1917)).

1 32 x 10
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1-5 x 10%

K from anemometers at heights of 21 to 305 metres
(Akerblom, F., ‘Nova Acta Reg. Soc. Upsaliensis’
(1908)).

b 1-2 % 109

14 x 10t

K from pilot balloons at heights between 100 and 800
metres (Taylor, ¢ Phil, Trans.,” A, vol. 215, p. 21 (1914),
also Hesselberg and Sverdrup, ‘ Leipzig Geophys. Inst.,’
Ser. 2, Heft 10 (1915)).
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5 x 10t

K {rom tracks of balloons either manned (L. F. Richard-
son, ¢ Weather Prediction by Numerical Process,” p. 221)
or not manned (Richardson & Proctor, ‘Royal
Meteorological Society Memoirs,” No. 1).
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Volcano ash, same reference as last ......ooo..ccooovveveriveenn,

5 x 108

5 x 10

Diffusion due to cyclones regarded as deviations from
the mean circulation of the latitude (Defant, ¢ Geog.
Ann.,” H. 3, also (1921), ¢ Wien, Akad, Wiss. Sitzb.,’
Ia, vol. 130, p. 401 (1921)).
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Richardson’s table of raw data

Richardson’s approach was semi-empirical. By
estimating “effective diffusivity” K = (|Ax|?)/t

as a function of £ = \/{(]Ax]|?), he found from
data that

K(0) ~ Kot*/3.
He proposed that the probability density func-
tion of the separation vector £ = x; — x> would
satisfy a diffusion equation

QP (L. t) = % (K(E)%(E,t))

with scale-dependent 2-particle eddy-diffusivity.
This equation predicts at long times that

(Ix1(t) — x2(t)[?) ~ 3,

averaging over velocity realizations.



Similarity Solution

Richardson (1926) observed that there is an exact similarity so-
lution of his equation, given by the stretched-exponential PDF

952/3
(Kot)%2 " (‘ 4Kot>
in three space dimensions. All solutions approach this self-similar
form asymptotically at long times.

P*(E,t) —

Averaging ¢2 with respect to this density vyields

(£2(1)) = yot>

with 49 = 1144K3/81.



Kolmogorov Cascade Picture
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A cartoon of the Kolmogorov cascade

In the Kolmogorov (1941) picture, velocity
differences across eddies of size ¢ have mag-
nitude

Su(l) ~ (e0)/3.

This increases with ¢, so that larger turbulent
eddies have larger velocities.

A pair of particles as they separate thus expe-
rience greater relative velocities as they move
further apart. The outcome is an explosive
separation

(2(t)) ~ goet®,
even much faster than ballistic (o t2).

The (presumed universal) constant go is now
usually called “Richardson’s constant’.



Advection by Kolmogorov Velocity

A toy calculation: Assume that £(t) satisfies

d 3

= 0(t) = su() = =(goet) /3.

~ (1) = 6u(t) =~ (g020)
Separation of variables gives the exact solution
3/2

0ty = |23 + (goe) /3t — to)

For t —tg > £2/>/(g0e)Y/3 = Ty

02(t) ~ goet>.



Fate of Particles Initially at the Same Point?

An odd feature of the previous result is that, if /g = 0, then

02(t) = goe(t — tg)3 > 0.

Two particles started at the same point at time ¢y separate to a
finite distance at any time t > tg!

The same oddity may be seen in Richardson’s similarity solution,
which satisfies at initial time tg =0

Pi(£,0) = §3(0).

All particles start with separation £(0) = 0. However, Pi(£,t) is a
smooth density for ¢ > 0, so that 4(t) > O with probability one.



Breakdown of Laplacian Determinism

According to Richardson’s results, Lagrangian fluid particles that
are advected by the fluid velocity u(x,t) starting at xg

%X(t) = u(x(t),1), x(to) = xg

have the property that there is more than one solution. Doesn’t
this violate the theorem on unigqueness of solutions of initial-value
problems for ODE's? No!

[.oophole: The theorem requires that u(x,t) be x—differentiable.
A turbulent velocity field in a Kolmogorov inertial range is only
Holder continuous

u(xq,t) — u(xo,t)| < Clxg — xo|"

with exponent h = 1/3.



Kraichnan White-Noise Advection Model

All the previous facts were noted in a seminal paper of Bernard, Gawedzki, and
Kupiainen (1998). They studied a soluble model of advection by a Gaussian
random velocity field with zero mean and covariance

(ui (x, t)uf(x',t')) = [Dgdij — Sii(x —x)]o(t — 1)
temporal white-noise and spatially rough for r, < r < L,
SY.(r) = D1[(1 + h)éij — hiirj]r™"

with 0 < h < 1, but smooth for r < r,. The velocity realizations u”(x,t) are
incompressible and only HOlder continuous with exponent h for v = Dlrgh — 0.

Richardson’s 2-particle diffusion equation holds exactly within this model

O:P(r,t) = 88 ( (r) (r t))

with r = x;1 — x2. Note Richardson’s original equat|on corresponds to h = 2/3

(a peculiarity of the white-noise approximation).
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Random Advection Problem

Bernard et al. (1998) study the problem of stochastic particle advection,
d
—x(1) = w(x(0), 1) + V2R (8), x(t0) = x0

perturbed by a Gaussian white-noise proportional to v2k.

The transition probability for a single particle in a fixed (non-random) velocity
realization u can be written as a path-integral:

x(t)=x

Dx exp (—4—Z/t dr |x(7) — uV(X(T),T)|2>

0

PYR(x, t|xo0,t0) = /

x(to)=xXo

In the limit v, k — 0 (or infinite Reynolds-number Re = u,ymsL/v) with Pr =v/k
fixed one would naively expect collapse to a delta-function,

Py (x, t|xo,to) — 53(X —x(1)),

with x(¢) the unique solution of x = u(x,t), x(tg) = xo.



Spontaneous Stochasticity

S

The distribution does not collapse! At least
in the Kraichnan model there is a nontrivial
limiting distribution P,(x,t|xo0,to) over an infi-
nite family of solutions to the (deterministic)
initial-value problem x = u(x,t), x(tp) = Xo.

There is an obvious analogy with spontaneous
symmetry-breaking, €.9g. a non-vanishing mean-
magnetization in a ferromagnet even in the

limit of zero external magnetic field.



More Chaotic Than Chaos!

Compare with what happens for a smooth velocity field (h = 1):
Lot) = su() = A¢
— = 0U = .
dt

Separation of variables now gives the exact solution

0(t) = Loettt—to),
The trajectories never ‘“forget” their initial separations: 4(t) — 0 as £y — O for any ¢ > tg.
For smooth dynamical systems there is at most exponential deviation of trajectories. The

exponential growth rate
1
A= Ilim |Iim In <£(t))

t—oo lo—0 T — 1o Eo

is the Lyapunov exponent and A > 0 is the signature of chaos. Any imprecision in the initial
data is exponentially magnified, leading to loss of predictability at long enough times.

Spontaneous stochasticity corresponds instead to A = +oo. The solution is unpredictable for
all future times, even with infinitely precise knowledge of the initial conditions!



Passive Scalar Advection
The scalar advection-diffusion equation
00 + (u”-V)0 = r/\6,

describes the evolution of dye and other pas-
sive tracers in a turbulent flow:

The exact solution is given by the Feynman-
Kac formula

0(x,t) :/d?’xo 0(xo, to) P (xo, to|X, t)

= / Da 6(a(to),to)
a(t)=x

exp (—i/t drla(r) — u”(a(T),T)|2)

for tg < t. Now the stochastic equation

a(r) = u’(a(r),7) + v2rn(r)

is solved backward in time from t to tg, with

final condition a(t) = x.



Dissipative Anomaly
Note that

%/d?’x 62(x,t) = =2k | d°z |VO(x,1)|?,
so that, naively, the integral is conserved for k = 0.

However, in the infinite Reynolds-number, fixed Prandtl-number limit (v,x — 0)
9(X7t) — /d3$0Q(XOytO)PU(XOat()lX?t)'

Heuristically, molecular diffusion is replaced by turbulent diffusion. In particular, the scalar
intensity is still dissipated

/d?’x 02 (x,t) < /d3:c 02(x,t0), t>to
even as v,k — 0!

This is the scalar analogue of a dissipative anomaly of Onsager (1949) for fluid turbulence.

The Lagrangian mechanism is ‘“spontaneous stochasticity.”



Laboratory Experiment

M. Bourgoin et al. Science 311 835—38 (2006)

Figure 1. Sketch of the experimental setup. The three cameras have an angular
separation of approximately 45° and are arranged in the forward scattering
direction from both lasers.




Experimental Results
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Modified Richardson Scaling
More success in looking for the modified Richardson scaling law:

(r2/3(t)) — r§/3 ~ Crel/3t.
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Figure 1. (a) The separation of two particles in time, compared with a modified
Richardson—Obukhov law, for different initial separations, ranging from 1 to
5 mm. The Reynolds number is fixed at R, = 690, with a Kolmogorov scale of
n = 30 um. We observe similar behavior at other Reynolds numbers. (b) The
change of Cr with 71 /1y, shown for three Reynolds numbers.

Note that to = (r2/e)1/3.



Gottingen Turbulence Tunnel

P v u ¢ 14 A n Ty R
Apparatus | bar) | (02/) | wy) | ou2sst) | ) | gum) | ) | )
SFg tunnel | 15 [1.5x 107" [ 1.0 1.2 0.45 | 1400 | 7.3 | 0.36 | 9600
air tunnel 1 1.5 x 107° 1.2 3.9 0.4 | 9100 | 172 2.0 | 730
SF tank 15 [1.5x10-"| 1.0 5.5 0.094 | 648 5.0 | 0.17 | 4360
water tank 1 8 x 10~1 2.2 59 0.094 | 1000 | 9.7 | 0.12 | 2800




Numerical Simulations

L. Biferale et al. Phys. Fluids 17 115101 (2005) employed numerical simulations
Navier-Stokes fluid equations on a 10243 grid at Reynolds numbers up to Re) = 284
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FIG. 1. The evolution of (r(t)*)/ 7" vs ¢/, for the initial separations r,
=1.27, ry=2.57, ry=9.87, and ry=19.67. The straight line is proportional to
£ Inset: (r(t)*)/er’ for the same four initial separations starting from /7,
~15.

10% g
10'F &
10° F
101F
10-2F
108 F
0
10 F
1078 F
10-7 I I | L L
0 0.5 1 1.5 9 25 3
(T/<T2)1/2)2/3

per/ 2V 2 (1) farer?

FIG. 2. Comparison of the Richardson PDF with the DNS data. The curves
refer to data for ry=127 at t=5.27, (solid line), r=77, (long dashed line),
t=147, (short dashed line), =427, (dotted line), and t=707, (dot-dashed
line). The thick solid line is the Richardson PDF (2).
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My Numerical Results

I have performed a study using turbulence data from numerical simulations on a 10243 grid
at Reynolds number Rey, = 433, available on-line in the public database at Johns Hopkins:

http://turbulence.pha. jhu.edu

I track 1024 particles (5 x 10° pairs) that all satisfy x = u(x,t) + V2« n(t), x(0) = xo.
Below x = v and 10v. The results are averaged over 256 initial points xg:
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Magnetohydrodynamics

Sufficiently collisional plasmas and liquid met-
als obey the magnetohydrodynamic equations:

o+ (V) = —Vp+ — (B-V)B + vAu
Ap
9B + (1-V)B = (B-V)u+ AAB

Vau=V:-B =0,

for an incompressible plasma. v = u/p is the
kinematic viscosity and A = 7702/471' is the mag-

) _ netic diffusivity for the (Spitzer) resistivity 7.
Hannes Alfvén, physics Nobel laureate (1970)

— "for fundamental work and discoveries in The first MHD equation is Newton's 2nd law

magnetohydrodynamics with fruitful applica- and the second MHD equation—called the

tions in different parts of plasma physics” induction equation—is a combination of Fara-
day’'s law and Ohm'’s law.



Magnetic Flux-Freezing

Ideal MHD (A = 0) predicts that magnetic flux is “frozen-in" to the plasma
(Alfvén, 1942): magnetic field lines are advected by the plasma fluid velocity.

Proof: The Lagrangian time-derivative (moving with the fluid) of B is, by
the ideal induction equation,

d
%B = (B-V)u.
Compare with the evolution equation of an infinitesimal line-element §¢ =
X1 — X» advected by the fluid:
d
dt
The equations are identical!

M =x1 —Xo =u(x1,t) —u(xz,t) = (6£-V)u.

“The most important property of an ideal plasma is flux freezing.” —R. M.
Kulsrud, Plasma Physics for Astrophysics (2005)

Flux-freezing is used to explain,e.g., the magnetization of white dwarfs and
neutron stars, the low angular momentum of stars, the spiral structure of
lines of force in the solar wind, etc.,etc.!



The Magnetic Reconnection Problem

Reconnecting
Magnetic Field Line

New Reconnected
Magnetic Field Lines

Large Coronal
Loop

Inflowing
Magnetic Field

Hot Flare
Loop

New Reconnected
Magnetic Field Lines

“Flux-frozenness” often fails! Topology changes
of magnetic field occur at very fast rates in
solar flares and coronal mass ejections, e.g.
releases times in flares range from 15 minutes
to several hours.

Other examples:

* If flux-freezing held during star-formation,
the magnetic pressure of in-falling field-lines
would be so great as to prevent gravitational
collapse altogether.

*The tangled line-structure in small-scale dy-
namos would quench the exponential growth
of magnetic field, etc.



Is an MHD Solution Possible?

It is usually argued that magnetic reconnection cannot be explained by resistive MHD, because
the violations of flux-freezing are too slow at high conductivity:

“Flux freezing is a very strong constraint on the behavior of magnetic fields in astrophysics.
As we show in chapter 3, this implies that lines do not break and their topology is preserved.
The condition for flux freezing can be formulated as follows: In a time ¢, a line of force can

slip through the plasma a distance
2
nc<t
L=/ 1
4 (1)

If this distance ¢ is small compared to §, the scale of interest, then flux freezing holds to a
good degree of approximation.”—R. M. Kulsrud (2005), Ch.13, Magnetic Reconnection

With £ = 10*% km and nc?/4r = 10* cm/sec, Kulsrud’s equation (1) predicts a time-scale for
solar flares of about 3 million years!

Most attempts to explain fast magnetic reconnection appeal to microscopic mechanisms
besides Spitzer resistivity which can decouple plasma particles and field lines over larger
distances, e.g. anomalous resistivity, Hall MHD effect, etc.



Sweet-Parker Reconnection Solution

By assuming a magnetic geometry with very thin current sheets, Sweet and Parker obtained
an accelerated rate of reconnection.

In an Alfvén crossing time t4 = L/vg4, resistive
diffusion of field-lines gives

A~ /Ay~ L/VS
with S = vsL/\; e.g. see Kulsrud, (2005).

With vg ~ v4, mass conservation vgA = wvgrL
implies that

szvA/\/g.

Sweet-Parker (1958) theory is recovered.

At the high Lundquist numbers S typical in astrophysics, Sweet-Parker reconnection is still
far too slow. E.g. in solar flares with S = 3 x 10'? and v4 = 3 x 107 cm/sec, the release time
is predicted to be about 2 years!
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an accelerated rate of reconnection.

In an Alfvén crossing time t4 = L/vg4, resistive
diffusion of field-lines gives

A~ /Aty ~L/VS
with S = v4sL/)\; e.g. see Kulsrud, (2005).

With vg ~ v4, mass conservation vgA = wvgrL
implies that

szvA/\/g.

Sweet-Parker (1958) theory is recovered.

At the high Lundquist numbers S typical in astrophysics, Sweet-Parker reconnection is still
far too slow. E.g. in solar flares with S = 3 x 102 and v4 = 3 x 107 cm/sec, the release time
is predicted to be about 2 years!

But the Sweet-Parker model is laminar: what about turbulence?



Stochastic Flux Freezing for Resistive MHD
The exact solution of the induction equation

OB+ (u-V)B = (B:-V)u+ B(V-u) + A\AB, B(ty) = Bo
is given by a ‘“sum-over-histories’, or stochastic Lundquist formula

B(x,t) = / Da Bg(a(tp))-J(a,t, tg) exp (4—1\/ dr|a(r) — u”(a(7),7)2>
a(t)=x

to

where the matrix J satisfies the ODE along the stochastic trajectory a(r)

d

d_J(a, T, tO) - J(aa T, to)VmU(a(T), T) - J(a7 T, to)(vl"u)(a(T)a T)?? J(aa t0>t0) =L

-
See G. L. Eyink, "Stochastic line motion and stochastic flux conservation for nonideal hy-
dromagnetic models,” J. Math. Phys. 50 083102 (2009)

Note that the final condition a(t) = x on the path-integral trajectories implies that they
correspond to solutions of the stochastic equation

a(r) = u(a,7) + vV2An(7)

integrated backward in time from t to to.



Stochastic Alfvén Theorem
Flux-freezing holds on average:

/B(r,t’)-dS(r) = / B(a,t)-dS(a)

S at/)t(S)

Here E is average over the ensemble of random loops at earlier time:

ensemble of loops at earlier time t

loop C at final time t’

Note ay; = xt‘,% are “back-to-label maps” for the stochastic forward flows.

The above result holds for all smooth surfaces S and for any pair of times tog <t < t' <ty
if and only if the magnetic field B(r,t) (for any velocity u) satisfies the induction equation

0B =Vx(uxB)+ AXA B (Eyink, 2009a).



Stochastic Lundquist Formula

B (a, to) 'VaXt,to (a)
det(Vaxtt,(a))

B(x,t) = E

Xt 1 (2)=x

Eyink (2009, 2010)

transport

average




2-Particle Dispersion in Nonlinear MHD Turbulence

Unlike in hydrodynamic turbulence, there are expected to be signficant effects
of the Lorentz force in nonlinear MHD turbulence. Particle separations will
be different parallel and perpendicular to the magnetic field.

The laws of 2-particle dispersion will depend upon theory of MHD turbulence.
Assuming the Goldreich-Sridhar (1995) scaling, du(r,) ~ (er)/3, one obtains
the Richardson-type law

2 ~et’
for the transverse slippage of magnetic field lines in MHD turbulence. Note
that separation should be slower along the field, éﬁ ~ (g/vy)?t*, because of

the greater smoothness for parallel displacements, du(r)) ~ (sr||/vA)1/2.

These predictions are in qualitative agreement with recent numerical studies
at moderate Reynolds numbers:

A. Busse and W.-C. Miller, Diffusion and dispersion in magnetohydrodynamic turbulence:
The influence of mean magnetic fields, Astron. Nachr. 329 714 (2008)

Further investigation at higher Reynolds numbers is required.



Magnetic Reconnection — Turbulent

Assume that the reconnection occurs in a background MHD plasma turbulence with rms
velocity u; < va and integral length or injection scale Ly.

y

Richardson diffusion of field-lines instead gives

| Vi A~ /et ~ L(L/Lg)Y?M3?

: 4

i G e using e = vjif (Kraichnan, 1965) and My = .

N o~ 4 2 A A S T/ Y

: X  With vg >~ v4, mass conservation vgA = vgrL

. R implies that

e or = va(L/ L) VM3,

Now Lazarian-Vishniac (1999) theory is ob-
tained, for the case L < L;. The reconnection

L | rate is independent of resistivity!

Estimating for solar flares that Ly ~ L and uy ~ 0.1lvyg (Bemporad, 2008) one obtains a
release time of about one hour.

For more details, see Eyink, Lazarian & Vishniac (2011).



Line-Wandering and Lazarian-Vishniac

(1999) Theory

Turbulent model

Moving a distance s along field-lines, one finds

that a pair of lines initially a distance E(f> apart
at s = 0 separate at the rate

d oby  duy
_EJ_ >y —.
ds Bo VA

1/3
Using the GS95 scaling duy ~ uj, (%) M,}x/3>
one can solve to obtain
07 ~ (s>/Ly) My

when Ly > s > K(f). This is an analogue of
Richardson diffusion for magnetic field-lines!



Spontaneous Stochasticity of
Magnetic Field-Lines

Consider in (a) a pair of magnetic field-lines

with initial separations E(f) indicated by

arrows and final separations £, (s) indicated by
red arrows, after traversing distance s along
the lines. Suppose that the initial separation

E(f) is gradually decreased toward zero inside
the inertial range, indicated in (b) and (c) by
the shortened arrows.

When the magnetic field is turbulent and rough,
then the final separation indicated by red ar-

rows need not decrease to zero! This is the

property of spontaneous stochasticity of the

magnetic field-lines themselves.




Other Contributions to Line-Diffusion

In principle, all of the other terms in the Generalized Ohm’s LLaw

1 P,
E=——uXB—|—JXB—VP
C

e [OJ
+ ( + V-(ul + Ju)) +nJ
nes \ Ot

nec nec

contribute to the slippage of magnetic field-lines.

For example, in resistive Hall MHD where

1 B
E—_luxB 4 3%
C

+ nd

the Hall electric field leads to field-lines being stochastically frozen-in to the
electron fluid

dxt,(a) = e (Xe4,(2), £)dt + V22X AW (1), X1, 1,(a) = a,

nec

with
u =u—J/en.
See Eyink (2009).



Hall Term Negligible Compared with Turbulent Advection!

The Hall velocity u? = J/ne = ¢V xB/4mne (a dissipation-range variable) in a
turbulent plasma may have a very large magnitude, but also a very short-range
correlation in space.

For example, assume small-scale equipartition of velocity and magnetic fields,
so that 6B(r) ~ 4mpou(r) for » < Ly. If the velocity-increments scale as
(u;(r)éu;(r)) ~ Ar?" in an inertial range with roughness exponent h, then

C

(wll (1)ufl (0)) ~ (-

)2 A(SBi(r)dB;(r))

2
~ ( ¢ ) 4rp - Ar20M) <« Ar2h = (§u; (r)du;(r))

dmne
for 2 > c?m;/4nne? = §2, with §, the ion inertial-length/ion skin depth.

Thus, the Hall velocity contributes negligibly to stochastic relative motion for
r > §; and resistive diffusion contributes negligibly for r > r, = (A\3/¢)1/4

d

d—z = su(r) — 6J(r) /en 4+ V2151 (L) ~ du(r).
When r > ¢§; and r,, the dominant effect is turbulent relative advection!



Conclusions

(i) Because of the ‘“forgetting” of initial separations in turbulent Richardson
diffusion, Lagrangian particle dynamics becomes intrinsically stochastic. Fluid
particle trajectories are random even in a fixed velocity realization.

(ii) Flux-freezing in turbulent MHD solutions is thus fundamentally altered and
becomes intrinsically stochastic. Magnetic flux-conservation holds neither in
the standard (deterministic) sense nor is entirely broken.

(iii) Stochastic flux-freezing underlies the mechanism of the Lazarian-Vishniac
(1999) theory of fast turbulent reconnection. The LV99 predictions were
originally obtained from the spontaneous stochasticity property of the field-
lines themselves for a rough, turbulent magnetic field.

(iv) Spontaneous stochasticity has many other important implications both
in MHD (e.g. turbulent magnetic dynamo) and in hydrodynamic turbulence.
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Appendix: The Batchelor Problem—Kinematic Magnetic Dynamo
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A simple model of turbulent motion of a conducting liquid fluid is considered, in which the flow velocity
has a Gaussian distribution function and the time for establishment of diffusion of the liquid particles is
zero. In this case an exact solution of the problem of amplification of a spontaneous magnetic field can
be derived. The instability criterion and magnetic field increment are obtained.

INTRODUCTION

WE discuss in the present article the'question of the
enhancement of 2 spontaneous ‘magnetic field by a turbu-
lent conducting liquid.. The general picture of the inter-
action between the magnetic field and the conducting
liquid was proposed by Batchelor™?, who started from
the analogy with a velocity vortex in an incompressible
liquid. The turbulent motion of the liquid influences the
magnetic field in two ways: On the one hand, the matter
stretches the force lines and increases the magnetic
energy, and on the other hand the matter increases the
diffusion coefficient®**? and by the same token it in-
creases the rate of damping of the magnetic field. The
latter effect is determined by the diffusion velocity of
the liquid particles, and the former by the diffusion
velocity of the liquid particles relative to one another
(the runaway velocity). We consider below a certain
artificial model, which, however, enables us to find the
exact solution and in which it is possible to trace in de-
tail the roles .of the noted effects.

The magnetic field is described by the diffusion equa-

tion .
OH /3t = rot[uH] + 4AH, divH =0, (1)*

where u is the liquid flow velocity and A is the magnetic
diffusion coefficient. The turbulent motion of the liquid
is assumed stationary, isotropic, and possessing suffi-
ciently simple correlation properties. For the mean
values of the Fourier components of the velocity

u(r, 1) = § dketera (k, 2), (2)
u(k,?) = (2n)~ { dre-*ru(r, 1)
we have the relations )
u(k,2)> =0, 3
el Dy, )5 = (k[ — 1) 0005 (k+K), 3
0i5(k) = 8i; — kok; | K2
We assume that the mean value of the products of an
even number of velocities breaks up into a sum of prod-
ucts of all possible pairs of mean values (Gaussian dis-
tribution). This enables us to use a diagram technique.
The magnetic field at the initial instant of time H{* (k)
will also be assumed to be a random quantity uncorrela-
ted with the velocity of the liquid, with

*[uH]=p X H.

H® ) B (K)) = Hy(k) 03 (k) b (k + k). (3"
The problem consists of determining the quantity
CHi(k, ) H; (K, £)y = H(k, £)oi; (k)8 (k + k'), R CY)

where the double angle brackets denote averaging over
the velocity distributions of the liquid and of the mag-
netic field H’. For H(k, t), obviously, there is the
boundary condition H(k, 0) = Ho(k).

In such a formulation, the problem is still very com-
plicated. Therefore we shall consider first only a limit-
ing case in which the characteristic time u(k, t) tends
to zero, and approximate the time-dependent correlation
function by a 6 function

u(k, 1) = v(k)5(t). (5)

In this approximation the problem can already be solved
exactly.

The- statistical properties of the liquid particles,
having a velocity correlator in the form (5), turn out to
be very simple. We deal essentially with a continuous

generalization of the discrete model of random walks, in -

which each displacement does not depend on the preced-
ing one. In fact, if we consider the particle trajectory
r(t), then the displacement 6r(t) = r(t +6t) — r(t) is not
correlated with r(t):

Kr()or(t)> =0, (6)
so that r(t) is a random quantity with Gaussian distribu-
tion, and

i‘(r(i)’)= 204, v0=Sdkv(k). %)

The distance between two liquid particles p(t) = r(t)
—r,(t) is also a random Gaussian quantity. For the rate
of change of {p*), by virtue of the relation

<exp {ikp (£)}> = exp {—/2kX p2)}
we have the equation
d{p2)
dt

=4 i [1—exp{~ J1¢e0}] (8)

The runaway velocity of two close particles is propor-
tional to the distance between them
dp®
dt

= 1200, va = o §dk0(R). Q)

At large distances, the particles move apart with a
velocity governed by double the diffusion coefficient (7).
Henceforth, the most important will be only the first two
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The Kazantsev-Kraichnan Dynamo Model

Kazantsev (1968) studied the turbulent kinematic dynamo model
0B = VX (u”"xB) 4+ \AB,
with Gaussian random velocity field with zero mean and covariance
(ul (x, )ul (X, 1)) = [Dy6i; — S(x — x)]6(t — t')
temporal white-noise and spatially rough for r, < r < L,
Syi(r) = Di[(1 4 h)di; — hiej]r?"
with O < h < 1, but smooth for r < r,.

Kazantsev (1968) found for Pr = v/\ <« 1 that there is a critical roughness
exponent h, = 1/2 in 3D, with kinematic dynamo for h > h. but not for h < h..

Why? Stretching by velocity-gradients is much larger for h < h,!



Explanation of the Kazantsev Dynamo Transition

The magnetic vectors arrive from a large volume « R3(t) with R2(t) ~ ¢t1/(1-h)
(analogue of Richardson diffusion).

/

Evink & Neto (2009) show that dynamo effect requires sufficient angular
correlation of independent pairs of line-vectors advected by the same velocity
realization that arrive simultaneously at the same space point. The line-vector
correlation

R;;i(r,t) = (£i(a, t)oﬁg(a',t)éfg(x(a, t) —x'(a’,t)))
with
bi(a,t) = ¢€;-Vyx(a,t)
and r = a’ — a, decays as a power of t for h < h. but grows o e for h > h..



Line-Vector Correlation Functions

in the Dynamo Regime
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A WKB analysis shows that for r» > ¢, there
is a stretched-exponential correlation

32
Ry(r,t), Ry (r,t) ~ e exp | —1p1/3
2Dq
in the KK model with h = 2/3, where ~ is the
dynamo growth rate and D; is the amplitude

of the velocity-covariance. Eyink (2010).

Line-vectors arriving from thousands of resistive-
lengths apart contribute substantially to the
dynamo. Notice also the “anti-dynamo ef-
fect” for initially longitudinal line-vectors.



Small-Scale Kinematic Dynamo in Hydro Turbulence (Pr,, = 1)

The stochastic Lundquist formula may be exploited numerically to study dynamo effect in
hydrodynamic turbulence by Lagrangian tracking of fluid particles. We show results using
10243 hydro DNS data from the JHU Turbulence Database: http://turbulence.pha. jhu.edu
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The asymptotic exponential growth range and Richardson t3-range begin at the same timel!



Line-Vector Correlations in Hydrodynamic Turbulence
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The stretched-exponential exp (—%rlﬂ) is observed, with D1 in the KK model chosen to

give the same prefactor of the t3-law as that found numerically in hydro turbulence.



