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Richardson Two-Particle Diffusion

Volcanic ash plume over K̄ılauea volcano

Meteorologist, physicist and applied mathe-
matician Lewis Fry Richardson proposed in
1926 that particle-pairs advected by turbu-
lence (e.g. a pair of soot particles in a volcanic
plume) would have mean-square separation in-
creasing with time as the cube power

〈|x1(t)− x2(t)|2〉 ∼ t3.

This is Richardson’s t3-law.



Scale-Dependent Eddy-Diffusivity
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Richardson’s table of raw data

Richardson’s approach was semi-empirical. By
estimating “effective diffusivity” K = 〈|∆x|2〉/t
as a function of ` =

√
〈|∆x|2〉, he found from

data that

K(`) ∼ K0`
4/3.

He proposed that the probability density func-
tion of the separation vector ` = x1−x2 would
satisfy a diffusion equation

∂tP (`, t) =
∂

∂`i

(
K(`)

∂P

∂`i
(`, t)

)

with scale-dependent 2-particle eddy-diffusivity.
This equation predicts at long times that

〈|x1(t)− x2(t)|2〉 ∼ t3,

averaging over velocity realizations.



Similarity Solution

Richardson (1926) observed that there is an exact similarity so-

lution of his equation, given by the stretched-exponential PDF

P∗(`, t) =
A

(K0t)9/2
exp

(
−9`2/3

4K0t

)

in three space dimensions. All solutions approach this self-similar

form asymptotically at long times.

Averaging `2 with respect to this density yields

〈`2(t)〉 = γ0t
3

with γ0 = 1144K3
0/81.



Kolmogorov Cascade Picture

A cartoon of the Kolmogorov cascade

In the Kolmogorov (1941) picture, velocity
differences across eddies of size ` have mag-
nitude

δu(`) ∼ (ε`)1/3.

This increases with `, so that larger turbulent
eddies have larger velocities.

A pair of particles as they separate thus expe-
rience greater relative velocities as they move
further apart. The outcome is an explosive
separation

〈`2(t)〉 ∼ g0εt
3,

even much faster than ballistic (∝ t2).

The (presumed universal) constant g0 is now
usually called “Richardson’s constant”.



Advection by Kolmogorov Velocity

A toy calculation: Assume that `(t) satisfies

d

dt
`(t) = δu(`) =

3

2
(g0ε`)

1/3.

Separation of variables gives the exact solution

`(t) =
[
`
2/3
0 + (g0ε)

1/3(t− t0)
]3/2

.

For t− t0 � `
2/3
0 /(g0ε)

1/3 ≡ T0

`2(t) ∼ g0εt
3.



Fate of Particles Initially at the Same Point?

An odd feature of the previous result is that, if `0 = 0, then

`2(t) = g0ε(t− t0)3 > 0.

Two particles started at the same point at time t0 separate to a

finite distance at any time t > t0!

The same oddity may be seen in Richardson’s similarity solution,

which satisfies at initial time t0 = 0

P∗(`,0) = δ3(`).

All particles start with separation `(0) = 0. However, P∗(`, t) is a

smooth density for t > 0, so that `(t) > 0 with probability one.



Breakdown of Laplacian Determinism

According to Richardson’s results, Lagrangian fluid particles that
are advected by the fluid velocity u(x, t) starting at x0

d

dt
x(t) = u(x(t), t), x(t0) = x0

have the property that there is more than one solution. Doesn’t
this violate the theorem on uniqueness of solutions of initial-value
problems for ODE’s? No!

Loophole: The theorem requires that u(x, t) be x−differentiable.
A turbulent velocity field in a Kolmogorov inertial range is only
Hölder continuous

|u(x1, t)− u(x2, t)| ≤ C|x1 − x2|h

with exponent h
.

= 1/3.



Kraichnan White-Noise Advection Model

All the previous facts were noted in a seminal paper of Bernard, Gawȩdzki, and
Kupiainen (1998). They studied a soluble model of advection by a Gaussian
random velocity field with zero mean and covariance

〈uνi (x, t)uνj(x′, t′)〉 = [Dν
0δij − Sνij(x− x′)]δ(t− t′)

temporal white-noise and spatially rough for rν � r � L,

Sνij(r) = D1[(1 + h)δij − hr̂ir̂j]r2h

with 0 < h < 1, but smooth for r < rν. The velocity realizations uν(x, t) are
incompressible and only Hölder continuous with exponent h for ν ≡ D1r2h

ν → 0.

Richardson’s 2-particle diffusion equation holds exactly within this model

∂tP (r, t) =
∂

∂ri

(
Sνij(r)

∂P

∂rj
(r, t)

)

with r = x1− x2. Note Richardson’s original equation corresponds to h = 2/3

(a peculiarity of the white-noise approximation).
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Random Advection Problem

Bernard et al. (1998) study the problem of stochastic particle advection,

d

dt
x(t) = uν(x(t), t) +

√
2κη(t), x(t0) = x0

perturbed by a Gaussian white-noise proportional to
√

2κ.

The transition probability for a single particle in a fixed (non-random) velocity
realization u can be written as a path-integral:

P ν,κ
u (x, t|x0, t0) =

∫ x(t)=x

x(t0)=x0

Dx exp

(
− 1

4κ

∫ t

t0

dτ |ẋ(τ)− uν(x(τ), τ)|2
)

In the limit ν, κ→ 0 (or infinite Reynolds-number Re = urmsL/ν) with Pr = ν/κ
fixed one would naively expect collapse to a delta-function,

P ν,κ
u (x, t|x0, t0)→ δ3(x− x(t)),

with x(t) the unique solution of ẋ = u(x, t), x(t0) = x0.



Spontaneous Stochasticity
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The distribution does not collapse! At least
in the Kraichnan model there is a nontrivial
limiting distribution Pu(x, t|x0, t0) over an infi-
nite family of solutions to the (deterministic)
initial-value problem ẋ = u(x, t), x(t0) = x0.

There is an obvious analogy with spontaneous

symmetry-breaking, e.g. a non-vanishing mean-

magnetization in a ferromagnet even in the

limit of zero external magnetic field.



More Chaotic Than Chaos!

Compare with what happens for a smooth velocity field (h = 1):

d

dt
`(t) = δu(`)

.
= A`.

Separation of variables now gives the exact solution

`(t) = `0e
A(t−t0).

The trajectories never “forget” their initial separations: `(t)→ 0 as `0 → 0 for any t > t0.

For smooth dynamical systems there is at most exponential deviation of trajectories. The
exponential growth rate

λ = lim
t→∞

lim
`0→0

1

t− t0
ln
(
`(t)

`0

)

is the Lyapunov exponent and λ > 0 is the signature of chaos. Any imprecision in the initial
data is exponentially magnified, leading to loss of predictability at long enough times.

Spontaneous stochasticity corresponds instead to λ = +∞. The solution is unpredictable for
all future times, even with infinitely precise knowledge of the initial conditions!



Passive Scalar Advection

The scalar advection-diffusion equation

∂tθ + (uν·∇)θ = κ4θ,
describes the evolution of dye and other pas-
sive tracers in a turbulent flow: The exact solution is given by the Feynman-

Kac formula

θ(x, t) =

∫
d3x0 θ(x0, t0)P ν,κ

u (x0, t0|x, t)

=

∫

a(t)=x

Da θ(a(t0), t0)

exp

(
− 1

4κ

∫ t

t0

dτ |ȧ(τ)− uν(a(τ), τ)|2
)

for t0 < t. Now the stochastic equation

ȧ(τ) = uν(a(τ), τ) +
√

2κη(τ)

is solved backward in time from t to t0, with

final condition a(t) = x.



Dissipative Anomaly

Note that

d

dt

∫
d3x θ2(x, t) = −2κ

∫
d3x |∇θ(x, t)|2,

so that, naively, the integral is conserved for κ = 0.

However, in the infinite Reynolds-number, fixed Prandtl-number limit (ν, κ→ 0)

θ(x, t) =

∫
d3x0 θ(x0, t0)Pu(x0, t0|x, t).

Heuristically, molecular diffusion is replaced by turbulent diffusion. In particular, the scalar
intensity is still dissipated

∫
d3x θ2(x, t) <

∫
d3x θ2(x, t0), t > t0

even as ν, κ→ 0!

This is the scalar analogue of a dissipative anomaly of Onsager (1949) for fluid turbulence.

The Lagrangian mechanism is “spontaneous stochasticity.”



Laboratory Experiment

M. Bourgoin et al. Science 311 835–38 (2006)
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Table 1. Experimental parameters. f denotes the rotation rate of the discs, u′
r is

the RMS radial velocity, u′
z is the RMS axial velocity, FPS is the camera frame

rate, and δt is the time between frames. These data were taken with transparent
25 µm polystyrene microspheres. We estimate that the uncertainty in ε is
roughly 12%.

f(Hz) Rλ u′
r (ms−1) u′

z (ms−1) ε (m2s−3) η(µm) L/η τη (ms) TL/τη FPS δt (ms) τη/δt

0.30 200 0.039 0.026 7.09 × 10−4 192 365 36.8 51 1000 1.00 37
0.43 240 0.056 0.038 2.03 × 10−3 146 479 21.3 61 1600 0.625 34
0.62 290 0.083 0.054 6.26 × 10−3 111 630 12.3 74 3000 0.333 37
0.90 350 0.121 0.080 2.01 × 10−2 84 830 7.11 88 5000 0.200 36
1.29 415 0.181 0.116 6.17 × 10−2 64 1090 4.12 106 9000 0.111 37
1.86 500 0.262 0.169 0.196 49 1433 2.39 127 27000 0.037 65
3.50 690 0.487 0.315 1.24 30 2337 0.897 176 27000 0.037 24
5.00 815 0.669 0.440 3.39 23 3087 0.544 208 27000 0.037 15

Figure 1. Sketch of the experimental setup. The three cameras have an angular
separation of approximately 45◦ and are arranged in the forward scattering
direction from both lasers.

and to increase their power. The pulse rate of both lasers was controlled by a single frequency
generator. These pulses obviated the need for exact camera synchronization, since the cameras
only recorded particle images while the lasers fired. Additionally, the pulse width of the lasers
set the effective exposure time of the cameras, and was typically on the order of a few hundred
nanoseconds. As sketched in figure1, the cameras were placed in the forward scattering direction
from each laser to maximize the amount of scattered light collected by the camera sensors.

2.3. Calibration

While particle-finding can be performed in the image space of each camera, the stereomatching
and subsequent particle tracking steps require knowledge of the locations of the particle centres

New Journal of Physics 8 (2006) 109 (http://www.njp.org/)

Lagrangian Particle Tracking!

!" Seed flow with tracer 

particles!

!" Locate tracers optically!

!" Multiple cameras ! 3D 

coordinates!

!" Follow tracers in time!

Exp. Fluids 40:301, 2006!



Experimental Results

Reynolds numbers up to Reλ = 815
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Figure 3. Scale collapse of the mean-square particle separation at Rλ = 815.
The relative dispersion 〈|r(t) − r0|2〉 scaled by (11/3)C2(εr0)

2/3 is plotted
for 50 different bins of initial separations, ranging from 0–1 mm (≈0–43η) to
49–50 mm (≈2107–2150η). The solid line is a pure t2 power law, and is not a fit.
The data collapse on to the t2 law almost perfectly [21].

For t∗ & 1, corresponding to t & t0, the relative velocity changes slowly and we can
approximate

〈δui(t
∗)δui(t

′)〉 ≈ 〈δu(0)2〉, (9)

which is equivalent to 〈δu(r0)
2〉, the trace of the second-order Eulerian velocity structure function

tensor. Integrating (8) and grouping terms, we therefore have

〈|r(t) − r0|2〉 = 11
3 C2(εr0)

2/3t2, (10)

where C2 is again the scaling constant for the second-order Eulerian velocity structure function.
This expression, which we term Batchelor scaling, should hold for t & t0. For t ( t0, the initial
separation should no longer be a relevant parameter, and the particle pair is expected to obey the
Richardson–Obukhov law. Combining Batchelor’s scaling law with the Richardson–Obukhov
law, we can write the evolution of the mean-square pair separation in the inertial range as

〈|r(t) − r0|2〉 =






11
3 C2(εr0)

2/3t2, t & t0,

gεt3, t0 & t & TL,
(11)

where TL is the integral timescale.
We have previously reported the observation of a clear Batchelor scaling range at Reynolds

numbers up to Rλ = 815 [21]. When we plot 〈|r(t) − r0|2〉 scaled by Batchelor’s constant
(11/3)C2(εr0)

2/3, we see a collapse of the dispersion data for different initial separations on to a t2

power law with unit slope, as illustrated in figure 3 at Rλ = 815. Plotted in this fashion, with time
nondimensionalized by the Kolmogorov time τη, the data for each initial separation deviates from

New Journal of Physics 8 (2006) 109 (http://www.njp.org/)
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Figure 10. The distance neighbour function for different initial separations at
Rλ = 815. The red straight line is Richardson’s predicted PDF, while the green
curved line is Batchelor’s. The symbols show the experimental measurements.
Each plot shows a different initial separation; for each initial separation, PDFs
from 20 times ranging from τη to 20τη are shown.

in t for all Reynolds numbers measured.We show the deviation from the Richardson and Batchelor
distance neighbour function predictions for the Rλ = 200 data in figure 13.

This is not the case if we consider q(r, t) without accounting for the nonzero initial separation
of the pair. As shown in figure 14, the raw distance neighbour function is strongly peaked around
the root-mean-square separation for short times. As time increases, q(r, t) spreads out, appearing

New Journal of Physics 8 (2006) 109 (http://www.njp.org/)



Modified Richardson Scaling

More success in looking for the modified Richardson scaling law:

〈r2/3(t)〉 − r2/3
0 ∼ CRε1/3t.

3

Figure 1. (a) The separation of two particles in time, compared with a modified

Richardson–Obukhov law, for different initial separations, ranging from 1 to

5mm. The Reynolds number is fixed at Rλ = 690, with a Kolmogorov scale of

η = 30µm. We observe similar behavior at other Reynolds numbers. (b) The
change of CR with TL/t0, shown for three Reynolds numbers.

experimentally [5]. In our previous measurements of relative dispersion [6, 7], we instead

found that the initial separation of the pair R0 plays an important role, as first suggested by

Batchelor [8]. He predicted that

〈δRiδRi〉 = (11/3)C2(εR0)
2/3t2, (2)

where δR(t) ≡ R(t) −R0 and C2 = 2.13± 0.22 is the scaling constant for the second-order
Eulerian velocity structure function [19]. Batchelor additionally predicted that this scaling law

should hold for t % t0, where

t0 ≡ (R20/ε)
1/3, (3)

may be regarded as the lifetime of an eddy of scale R0.

It has been suggested that the failure to observe the Richardson–Obukhov law is due to

the influence of particle pairs that separate anomalously slowly or quickly, so that they bring

in non-inertial-range effects [20, 21]. This will occur unless the inertial range is sufficiently

wide and the effects of both the dissipation and integral scales are negligible, requiring

very large Reynolds numbers. In addition, the finite measurement volume in experiments

may introduce a bias against quickly separating particle pairs [22]. We have therefore also

measured 〈R2/3(t)〉 − R
2/3
0 , which is less affected by the finite-volume bias and may display

scaling behavior at Reynolds numbers accessible in current experiments [6]. If the Richardson–

Obukhov law holds, then

(〈R2/3(t)〉 − R
2/3
0 )/R

2/3
0 = CR(t/t0), (t0 % t % TL, R0 % R % L), (4)

where CR should be a constant related to the Richardson constant g. The compensated plot

(〈R2/3(t)〉 − R
2/3
0 )/R

2/3
0 /(t/t0) should collapse to a plateau in the inertial range, independent

of initial separation R0. As shown in figure 1(a), plateaus, though short, do exist for t & t0. We

find, however, that the initial separation R0 again plays a role: t0 is the timescale of the transition

to the 〈R2/3〉 ∼ t scaling and the plateau values depend on R0. These observations support our

earlier argument that a very large separation between TL and t0 (corresponding to a very large

New Journal of Physics 10 (2008) 013012 (http://www.njp.org/)

Note that t0 ≡ (r2
0/ε)

1/3.



Göttingen Turbulence Tunnel
Why is it so difficult?!



Numerical Simulations

L. Biferale et al. Phys. Fluids 17 115101 (2005) employed numerical simulations of the

Navier-Stokes fluid equations on a 10243 grid at Reynolds numbers up to Reλ = 284

p!r,t" =
Ar2

!k0!1/3t"9/2 exp#−
9r2/3

4k0!1/3t
$ , !2"

where A= !3/2"8 /"!9/2" is a normalization constant. This
exhibits strong non-Gaussianity with a narrow peak at the
origin and very large tails and gives rise to the celebrated
scaling for the second-order moment

%r2& = g!t3. !3"

Here g=1144k0
3 /81 is the Richardson constant which is

supposed to be universal. This result was also derived by
Obukhov24 using Kolmogorov’s classical theory of turbu-
lence !K41".9

The Richardson PDF is perfectly self-similar; all posi-
tive moments behave according to the dimensional law rp

# t3p/2. The scaling !3" is notoriously difficult to achieve both
in laboratory experiments and in DNS on account of the
large separation of scales that is required to observe it. As a
result, estimates of g have varied widely, from 0.06 to 3.5.8

The main practical difficulties in achieving a long inertial
subrange are due to dissipative range effects at the ultraviolet
end of the spectrum, integral scale effects at the infrared end
of the spectrum, and the finite initial separation of the pairs.
In the dissipation range, pairs separate exponentially and
with widely varying growth rates—some pairs separate rap-
idly while others remain close together. This leads to the
formation of a broad distribution of separations. As a result,
slowly separating pairs !which remain in the dissipative
range" and rapidly separating pairs !which approach the in-
tegral scales" “contaminate” the statistics in the inertial
range. A very large Reynolds number is therefore required to
produce reliable Lagrangian statistics in the inertial range.

In Fig. 1 we plot the mean-square separation %r2& vs t,
normalized by the Kolmogorov microscales, $ and %$, re-
spectively. Although the curves begin to collapse at large t,
they do not display a t3 scaling and still show a dependence
on the initial separation. Thus, any attempt to extract the
value of the Richardson constant will be marred by the
memory of the initial separation. The simplest way to mea-
sure g is to plot %r2& scaled by the asymptotic prediction, !t3,

and look for a plateau. These curves are displayed in the
inset of Fig. 1. It is clear that none of them produces a good
plateau, and, given the spread of curves with different initial
separations, the value will be at best an order of magnitude
estimate subject to considerable uncertainty.

An alternative method, used in Refs. 13, 15, and 18,
consists of fitting a straight line to %r2&1/3 in a suitable time
interval. If Eq. !3" holds, this straight line, when extrapolated
back toward t=0, should pass through the origin and have a
slope of !g!"1/3. For all curves, we find a small nonzero
intercept whose value varies with r0. This introduces an extra
free parameter in the linear fit corresponding to the nonzero
intercept. The curve with the smallest nonzero intercept has
r0=2.5$ and gives a value of g=0.47 with an error of the
order of approximately 10% depending on the time range
!here taken to be 15%$& t&75%$". This value of g is smaller
than that found by Yeung and Borgas18 and Ishihara and
Kaneda,15 though still of the same order of magnitude, but
agrees well with that of Ott and Mann13 and Boffetta and
Sokolov.14

In order to make a more complete analysis of Richard-
son’s model, we compute the PDF of the separation distance.
The Richardson PDF relies on two phenomenological as-
sumptions: the first is that the eddy diffusivity is self-similar,
the second is that the velocity field is short-time correlated.
However, it is known that anomalous corrections to the K41
scalings exist !see, e.g., Ref. 25", and these are likely to
complicate the situation.

In Fig. 2 we compare the separation PDF for the smallest
initial separation, r0=1.2$, calculated from the DNS data,
with that predicted by Richardson, namely !2". For small
times !up to t'40%$", we observed a rapid change in shape
with the PDF showing a pronounced tail, which indicates
that while most pairs are still close together, some have
moved very far apart !not shown". At these times the curves
do not rescale, indicating that the early stages of the separa-
tion process are very intermittent. Here, the physics of the
dissipative range still exerts an influence on the separation
process and so we would not expect agreement with the Ri-
chardson PDF. Only for times in the range 40–70%$ do we

FIG. 1. The evolution of %r!t"2& /$2 vs t /%$ for the initial separations r0
=1.2$, r0=2.5$, r0=9.8$, and r0=19.6$. The straight line is proportional to
t3. Inset: %r!t"2& /!t3 for the same four initial separations starting from t /%$

'15.

FIG. 2. Comparison of the Richardson PDF with the DNS data. The curves
refer to data for r0=1.2$ at t=5.2%$ !solid line", t=7%$ !long dashed line",
t=14%$ !short dashed line", t=42%$ !dotted line", and t=70%$ !dot-dashed
line". The thick solid line is the Richardson PDF !2".
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Downloaded 19 Feb 2008 to 128.220.17.185. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



My Numerical Results

I have performed a study using turbulence data from numerical simulations on a 10243 grid
at Reynolds number Reλ = 433, available on-line in the public database at Johns Hopkins:

http://turbulence.pha.jhu.edu

I track 1024 particles (5× 105 pairs) that all satisfy ẋ = u(x, t) +
√

2κη(t), x(0) = x0.

Below κ = ν and 10ν. The results are averaged over 256 initial points x0:
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Magnetohydrodynamics

Hannes Alfvén, physics Nobel laureate (1970)

— “for fundamental work and discoveries in

magnetohydrodynamics with fruitful applica-

tions in different parts of plasma physics”

Sufficiently collisional plasmas and liquid met-
als obey the magnetohydrodynamic equations:

∂tu + (u·∇)u = −∇p+
1

4πρ
(B·∇)B + ν4u

∂tB + (u·∇)B = (B·∇)u + λ4B

∇·u =∇·B = 0,

for an incompressible plasma. ν = µ/ρ is the
kinematic viscosity and λ = ηc2/4π is the mag-
netic diffusivity for the (Spitzer) resistivity η.

The first MHD equation is Newton’s 2nd law

and the second MHD equation—called the

induction equation—is a combination of Fara-

day’s law and Ohm’s law.



Magnetic Flux-Freezing

Ideal MHD (λ = 0) predicts that magnetic flux is “frozen-in” to the plasma
(Alfvén, 1942): magnetic field lines are advected by the plasma fluid velocity.

Proof: The Lagrangian time-derivative (moving with the fluid) of B is, by
the ideal induction equation,

d

dt
B = (B·∇)u.

Compare with the evolution equation of an infinitesimal line-element δ` =
x1 − x2 advected by the fluid:

d

dt
δ` = ẋ1 − ẋ2 = u(x1, t)− u(x2, t)

.
= (δ`·∇)u.

The equations are identical!

“The most important property of an ideal plasma is flux freezing.” —R. M.
Kulsrud, Plasma Physics for Astrophysics (2005)

Flux-freezing is used to explain,e.g., the magnetization of white dwarfs and
neutron stars, the low angular momentum of stars, the spiral structure of
lines of force in the solar wind, etc.,etc.!



The Magnetic Reconnection Problem

“Flux-frozenness” often fails! Topology changes
of magnetic field occur at very fast rates in
solar flares and coronal mass ejections, e.g.
releases times in flares range from 15 minutes
to several hours.

Other examples:

* If flux-freezing held during star-formation,
the magnetic pressure of in-falling field-lines
would be so great as to prevent gravitational
collapse altogether.

*The tangled line-structure in small-scale dy-

namos would quench the exponential growth

of magnetic field, etc.



Is an MHD Solution Possible?

It is usually argued that magnetic reconnection cannot be explained by resistive MHD, because

the violations of flux-freezing are too slow at high conductivity:

“Flux freezing is a very strong constraint on the behavior of magnetic fields in astrophysics.
As we show in chapter 3, this implies that lines do not break and their topology is preserved.
The condition for flux freezing can be formulated as follows: In a time t, a line of force can
slip through the plasma a distance

` =

√
ηc2t

4π
(1)

If this distance ` is small compared to δ, the scale of interest, then flux freezing holds to a

good degree of approximation.”—R. M. Kulsrud (2005), Ch.13, Magnetic Reconnection

With ` = 104 km and ηc2/4π = 104 cm/sec, Kulsrud’s equation (1) predicts a time-scale for
solar flares of about 3 million years!

Most attempts to explain fast magnetic reconnection appeal to microscopic mechanisms

besides Spitzer resistivity which can decouple plasma particles and field lines over larger

distances, e.g. anomalous resistivity, Hall MHD effect, etc.



Sweet-Parker Reconnection Solution

By assuming a magnetic geometry with very thin current sheets, Sweet and Parker obtained

an accelerated rate of reconnection.

In an Alfvén crossing time tA = L/vA, resistive
diffusion of field-lines gives

∆ !
√

λtA ! L/
√

S

with S = vAL/λ; e.g. see Kulsrud, (2005).

With v0 ! vA, mass conservation v0∆ = vRL
implies that

vR = vA/
√

S.

Sweet-Parker (1958) theory is recovered.

At the high Lundquist numbers S typical in astrophysics, Sweet-Parker reconnection is still
far too slow. E.g. in solar flares with S = 3×1012 and vA = 3×107 cm/sec, the release time
is predicted to be about 2 years!



Sweet-Parker Reconnection Solution

By assuming a magnetic geometry with very thin current sheets, Sweet and Parker obtained

an accelerated rate of reconnection.

In an Alfvén crossing time tA = L/vA, resistive
diffusion of field-lines gives

∆ !
√

λtA ! L/
√

S

with S = vAL/λ; e.g. see Kulsrud, (2005).

With v0 ! vA, mass conservation v0∆ = vRL
implies that

vR = vA/
√

S.

Sweet-Parker (1958) theory is recovered.

At the high Lundquist numbers S typical in astrophysics, Sweet-Parker reconnection is still
far too slow. E.g. in solar flares with S = 3×1012 and vA = 3×107 cm/sec, the release time
is predicted to be about 2 years!

But the Sweet-Parker model is laminar: what about turbulence?



Stochastic Flux Freezing for Resistive MHD

The exact solution of the induction equation

∂tB + (u·∇)B = (B·∇)u + B(∇·u) + λ4B, B(t0) = B0

is given by a “sum-over-histories”, or stochastic Lundquist formula

B(x, t) =

∫

a(t)=x

Da B0(a(t0))·J(a, t, t0) exp

(
− 1

4λ

∫ t

t0

dτ |ȧ(τ)− uν(a(τ), τ)|2
)

where the matrix J satisfies the ODE along the stochastic trajectory a(τ)

d

dτ
J(a, τ, t0) = J(a, τ, t0)∇xu(a(τ), τ)− J(a, τ, t0)(∇x·u)(a(τ), τ), , J(a, t0, t0) = I.

See G. L. Eyink, “Stochastic line motion and stochastic flux conservation for nonideal hy-
dromagnetic models,” J. Math. Phys. 50 083102 (2009)

Note that the final condition a(t) = x on the path-integral trajectories implies that they
correspond to solutions of the stochastic equation

ȧ(τ) = u(a, τ) +
√

2λη(τ)

integrated backward in time from t to t0.



Stochastic Alfvén Theorem
Flux-freezing holds on average:

∫

S

B(r, t′)·dS(r) =

〈[∫

at′,t(S)

B(a, t)·dS(a)

]〉
.

Here E is average over the ensemble of random loops at earlier time:
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Note at′,t = x−1
t′,t are “back-to-label maps” for the stochastic forward flows.

The above result holds for all smooth surfaces S and for any pair of times t0 ≤ t < t′ ≤ tf
if and only if the magnetic field B(r, t) (for any velocity u) satisfies the induction equation
∂tB =∇×(u×B) + λ4B (Eyink, 2009a).



Stochastic Lundquist Formula

B(x, t) = E

[
B(a, t0)·∇axt,t0(a)

det(∇axt,t0(a))

∣∣∣∣
xt,t0(a)=x

]

Eyink (2009, 2010)
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2-Particle Dispersion in Nonlinear MHD Turbulence

Unlike in hydrodynamic turbulence, there are expected to be signficant effects
of the Lorentz force in nonlinear MHD turbulence. Particle separations will
be different parallel and perpendicular to the magnetic field.

The laws of 2-particle dispersion will depend upon theory of MHD turbulence.
Assuming the Goldreich-Sridhar (1995) scaling, δu(r⊥) ∼ (εr⊥)1/3, one obtains
the Richardson-type law

`2
⊥ ∼ εt3

for the transverse slippage of magnetic field lines in MHD turbulence. Note
that separation should be slower along the field, `2

‖ ∼ (ε/vA)2t4, because of

the greater smoothness for parallel displacements, δu(r‖) ∼ (εr‖/vA)1/2.

These predictions are in qualitative agreement with recent numerical studies
at moderate Reynolds numbers:

A. Busse and W.-C. Müller, Diffusion and dispersion in magnetohydrodynamic turbulence:
The influence of mean magnetic fields, Astron. Nachr. 329 714 (2008)

Further investigation at higher Reynolds numbers is required.



Magnetic Reconnection — Turbulent

Assume that the reconnection occurs in a background MHD plasma turbulence with rms

velocity uL < vA and integral length or injection scale Lf .

Richardson diffusion of field-lines instead gives

∆ !
√

εt3A ! L(L/Lf)
1/2M2

A

using ε =
u4

L

vALf
(Kraichnan, 1965) and MA ≡ uL

vA
.

With v0 ! vA, mass conservation v0∆ = vRL
implies that

vR = vA(L/Lf)
1/2M2

A.

Now Lazarian-Vishniac (1999) theory is ob-

tained, for the case L < Lf. The reconnection

rate is independent of resistivity!

Estimating for solar flares that Lf ' L and uL ' 0.1vA (Bemporad, 2008) one obtains a
release time of about one hour.

For more details, see Eyink, Lazarian & Vishniac (2011).



Line-Wandering and Lazarian-Vishniac
(1999) Theory

plasmas. In x 4 we apply this work to various phases in the
ISM. Finally, x 5 contains our basic conclusions.

2. MAGNETOHYDRODYNAMIC TURBULENCE IN A
PARTIALLY IONIZED PLASMA

In this section we consider the effect of neutral particles on
the turbulent cascade in the ISM. We begin by briefly
reviewing the nature of the strong turbulent MHD cascade and
the dynamical influence of neutral particles. In x 2.2 we de-
scribe the cascade when viscous damping, due to neutral
particles, is strong, but the one-fluid approximation remains
valid. In x 2.3 we consider the uncoupled regime, covering
scales where the neutral particles exert a uniform drag on all
motions. We end, in x 2.4, with a brief discussion of the
implications of this picture for observations of turbulence in
the ISM.

2.1. Neutral-Ion Damping

The role of neutral-ion damping in MHD turbulence has
been discussed previously in the context of the ISM (in par-
ticular, see Spangler 1991; Minter & Spangler 1997). The
basic conclusion was that neutral fluid heating is a plausible
sink for the turbulent energy revealed through measurements
of interstellar scintillation. Here we are concerned instead with
how a neutral gas component will modify the turbulent power

spectrum. The most relevant observational point is that the
ISM turbulent power spectrum has no strong features at
wavelengths where neutral-ion coupling would be expected to
play a dominant role (Armstrong, Rickett, & Spangler 1995).
Instead, the power spectrum extends to very small scales
(<108 cm) in an approximate power law. Qualitatively, this
suggests that stochastic reconnection can take place even in
partially neutral plasmas. However, several basic questions
remain unanswered. Previous work on turbulence in the ISM
has not included a discussion of the most plausible model for
MHD turbulence (although a simple hydrodynamic model
was addressed, which is remarkably close to the model we
use here). Moreover, we need to understand why neutral
damping fails to produce a strong signature in the ISM, or at
least in the diffuse ionized component of the ISM, before we
can construct a general model for its role in partially ionized
plasmas.

2.1.1. The Goldreich-Sridhar Model

The GS95 model of strong MHD turbulence is based on the
notion of a Kolmogorov-like cascade with an anisotropy im-
posed by the large-scale magnetic field. The exact degree of
anisotropy follows from an average balance between hydro-
dynamic and magnetic forces. Eddies on a given scale are
characterized by a wavenumber perpendicular to the mean

Fig. 1.—Top: Sweet-Parker scheme of reconnection. Middle: Illustration of stochastic reconnection that accounts for field line noise. Bottom: Close-up of the
contact region. Thick arrows depict outflows of plasma. From Lazarian & Vishniac (2000).

STOCHASTIC RECONNECTION IN PARTIALLY IONIZED GAS 183No. 1, 2004 Moving a distance s along field-lines, one finds

that a pair of lines initially a distance `(0)
⊥ apart

at s = 0 separate at the rate

d

ds
`⊥ '

δb`

B0
' δu`

vA
.

Using the GS95 scaling δu` ≈ uL
(
`⊥
Lf

)1/3

M
1/3
A ,

one can solve to obtain

`2
⊥ ' (s3/Lf)M4

A

when Lf > s � `(0)
⊥ . This is an analogue of

Richardson diffusion for magnetic field-lines!



Spontaneous Stochasticity of
Magnetic Field-Lines

Consider in (a) a pair of magnetic field-lines

with initial separations `(0)
⊥ indicated by green

arrows and final separations `⊥(s) indicated by
red arrows, after traversing distance s along
the lines. Suppose that the initial separation

`(0)
⊥ is gradually decreased toward zero inside

the inertial range, indicated in (b) and (c) by
the shortened green arrows.

When the magnetic field is turbulent and rough,

then the final separation indicated by red ar-

rows need not decrease to zero! This is the

property of spontaneous stochasticity of the

magnetic field-lines themselves.

(a)

(b)

(c)

Everything that we have stated about La-
grangian particle trajectories applies just as well
to magnetic field-lines ξ(x, σ), which are defined
by solving (at each fixed time t)

{
dξ
dσ (x, σ) = B(ξ(x, σ), t),
ξ(x, 0) = x.

(33)

Here ξ(x, σ) is the field-line which passes through
point x (at time t). The parameter σ is re-
lated to arc-length s along the field-line by ds =
|B(ξ(x, σ), t)|dσ. In GS95 theory, field lines which
correspond to two nearby points x,x′ with r =
x′ − x will separate in the transverse direction as

|ξ⊥(x′, s)− ξ⊥(x, s)| ∼ (s3/Li)1/2M2
A

in the rms sense, for s# s0 = O(vA(r2
⊥/ε)1/3) and

for r⊥ > rλ = O
(
(λ3/ε)1/4

)
. See eq.(7). This is

exactly the “stochastic line-wandering” which was
invoked in the LV99 theory of fast magnetic re-
connection and, later, in the Narayan & Medvedev
(2001) theory of thermal conduction in a turbulent
MHD plasma. Just as for Lagrangian trajectories,
the initial separation r between field lines is “for-
gotten” after proceeding a large enough distance
along them. This is the reason that the Narayan
& Medvedev (2001) result for the thermal con-
ductivity does not depend upon the electron Lar-
mor radius ρe. In fact, magnetic field-lines become
stochastic in the limit λ→ 0 in precisely the same
sense as do Lagrangian particle trajectories in the
limit ν → 0. Consider a random bundle of field
lines ξ(x + r̃, s) for a stochastic displacement vec-
tor r̃ distributed over the ball |r̃| < r0 of radius r0.
By taking the limits first λ→ 0 and then r0 → 0,
one obtains an infinite ensemble of magnetic field-
lines all passing through the same point x!

3.3. The generalized Ohm’s law

Our arguments for stochastic flux-freezing may
be criticized as physically unrealistic because they
seem to depend upon the resistive MHD model
(18), which is a highly simplified description of
reality. There are many non-ideal terms that ap-
pear in the magnetic equations of motion for an
ionized plasma, which may be summarized in the
generalized Ohm’s law:

E = −1
c
u×B + η⊥J⊥ + η‖J‖ +

J×B
nec

13



Other Contributions to Line-Diffusion

In principle, all of the other terms in the Generalized Ohm’s Law

E = −1

c
u×B +

J×B

nec
− ∇·Pe

nec
+

me

ne2

(
∂J

∂t
+∇·(uJ + Ju)

)
+ ηJ

contribute to the slippage of magnetic field-lines.

For example, in resistive Hall MHD where

E = −1

c
u×B +

J×B

nec
+ ηJ

the Hall electric field leads to field-lines being stochastically frozen-in to the
electron fluid

dxt,t0(a) = ue(xt,t0(a), t)dt+
√

2λ dW(t), xt0,t0(a) = a,

with

ue = u− J/en.

See Eyink (2009).



Hall Term Negligible Compared with Turbulent Advection!

The Hall velocity uH = J/ne = c∇×B/4πne (a dissipation-range variable) in a
turbulent plasma may have a very large magnitude, but also a very short-range
correlation in space.

For example, assume small-scale equipartition of velocity and magnetic fields,
so that δB(r) ∼ √4πρ δu(r) for r � Lf . If the velocity-increments scale as
〈δui(r)δuj(r)〉 ∼ Ar2h in an inertial range with roughness exponent h, then

〈uHi (r)uHj (0)〉 ∼
( c

4πne

)2
4〈δBi(r)δBj(r)〉

∼
( c

4πne

)2
4πρ ·Ar−2(1−h) � Ar2h = 〈δui(r)δuj(r)〉

for r2 � c2mi/4πne2 = δ2
i , with δi the ion inertial-length/ion skin depth.

Thus, the Hall velocity contributes negligibly to stochastic relative motion for
r � δi and resistive diffusion contributes negligibly for r � rη ≡ (λ3/ε)1/4

dr

dt
= δu(r)− δJ(r)/en+

√
2λδη(t) ' δu(r).

When r � δi and rη, the dominant effect is turbulent relative advection!



Conclusions

(i) Because of the “forgetting” of initial separations in turbulent Richardson
diffusion, Lagrangian particle dynamics becomes intrinsically stochastic. Fluid
particle trajectories are random even in a fixed velocity realization.

(ii) Flux-freezing in turbulent MHD solutions is thus fundamentally altered and
becomes intrinsically stochastic. Magnetic flux-conservation holds neither in
the standard (deterministic) sense nor is entirely broken.

(iii) Stochastic flux-freezing underlies the mechanism of the Lazarian-Vishniac
(1999) theory of fast turbulent reconnection. The LV99 predictions were
originally obtained from the spontaneous stochasticity property of the field-
lines themselves for a rough, turbulent magnetic field.

(iv) Spontaneous stochasticity has many other important implications both
in MHD (e.g. turbulent magnetic dynamo) and in hydrodynamic turbulence.
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G. Falkovich, K. Gawȩdzki and M. Vergassola, Particles and fields in fluid
turbulence, Rev. Mod. Phys. 73 913–975 (2001)

F. Toschi and E. Bodenschatz, Lagrangian properties of particles in turbu-
lence, Annu. Rev. Fluid Mech. 41 375–404 (2009)

J. P. L. C. Salazar and L. R. Collins, Two-particle dispersion in isotropic
turbulent flows, Annu. Rev. Fluid Mech. 41 405–432 (2009)

Spontaneous Stochasticity:

D. Bernard, K. Gawedzki, and A. Kupiainen, Slow modes in passive advection,
J . Stat. Phys. 90 519569 (1998)

K. Gawedzki and M. Vergassola, Phase transition in the passive scalar advec-
tion, Phys. D. 138 63–90 (2000).



W. E and E. Vanden-Eijnden, Generalized flows, intrinsic stochasticity and
turbulent transport, Proc. Natl. Acad. Sci., 97, 8200–8205 (2000)

W. E and E. Vanden-Eijnden, Turbulent Prandtl number effect on passive
scalar advection, Phys. D 152-153, 636–645 (2001)

M. Chaves et al., Lagrangian dispersion in gaussian self-similar velocity en-
sembles, J. Stat. Phys. 113 643–692 (2003)

A. Kupiainen, Nondeterministic dynamics and turbulent transport, Ann. Henri
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Appendix: The Batchelor Problem—Kinematic Magnetic Dynamo





The Kazantsev-Kraichnan Dynamo Model

Kazantsev (1968) studied the turbulent kinematic dynamo model

∂tB =∇×(uν×B) + λ4B,

with Gaussian random velocity field with zero mean and covariance

〈uνi (x, t)uνj(x′, t′)〉 = [Dν
0δij − Sνij(x− x′)]δ(t− t′)

temporal white-noise and spatially rough for rν � r � L,

Sνij(r) = D1[(1 + h)δij − hr̂ir̂j]r2h

with 0 < h < 1, but smooth for r < rν.

Kazantsev (1968) found for Pr = ν/λ � 1 that there is a critical roughness
exponent hc = 1/2 in 3D, with kinematic dynamo for h > hc but not for h < hc.

Why? Stretching by velocity-gradients is much larger for h < hc!



Explanation of the Kazantsev Dynamo Transition

The magnetic vectors arrive from a large volume ∝ R3(t) with R2(t) ∼ t1/(1−h)

(analogue of Richardson diffusion).

Eyink & Neto (2009) show that dynamo effect requires sufficient angular
correlation of independent pairs of line-vectors advected by the same velocity
realization that arrive simultaneously at the same space point. The line-vector
correlation

Rij(r, t) = 〈`i(a, t)·`′j(a′, t)δ3(x(a, t)− x′(a′, t))〉
with

`i(a, t) = êi·∇ax(a, t)

and r = a′ − a, decays as a power of t for h < hc but grows ∝ eγt for h > hc.



Line-Vector Correlation Functions
in the Dynamo Regime
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A WKB analysis shows that for r � `η there
is a stretched-exponential correlation

RL(r, t), RN(r, t) ∼ eγt exp

(
−3
√

2γ

2D1
r1/3

)

in the KK model with h = 2/3, where γ is the

dynamo growth rate and D1 is the amplitude

of the velocity-covariance. Eyink (2010).

Line-vectors arriving from thousands of resistive-

lengths apart contribute substantially to the

dynamo. Notice also the “anti-dynamo ef-

fect” for initially longitudinal line-vectors.



Small-Scale Kinematic Dynamo in Hydro Turbulence (Prm = 1)

The stochastic Lundquist formula may be exploited numerically to study dynamo effect in

hydrodynamic turbulence by Lagrangian tracking of fluid particles. We show results using

10243 hydro DNS data from the JHU Turbulence Database: http://turbulence.pha.jhu.edu
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The asymptotic exponential growth range and Richardson t3-range begin at the same time!



Line-Vector Correlations in Hydrodynamic TurbulenceTurbulent Line-Correlations
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The stretched-exponential exp
(
−3
√

2γ

2D1
r1/3

)
is observed, with D1 in the KK model chosen to

give the same prefactor of the t3-law as that found numerically in hydro turbulence.


