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Prize Problams. The Scientific Advisory Board of CMI selected these problems,
focusing an important classic questions that have resisted solution over the
wvears., The Board of Directors of CMI designated a £7 million prize fund for the
zolution to theze problems, with 51 million allecated to each. During the
Millennium Meeting held on May 24, 2000 at the Collége de France, Timothy
Gowers preszented a lecture entitled The Importancs of Mathematics, aimed for
the general public, while John Tate and Michael Ativah =poke on the problems.
The CMI invited specialists to formulate each problem.
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Mavier-Stokes Equation

Waves follow our boat as we meander across the lake, and turbulent air
currents follow our flight in @ madern jet. Mathematicians and physicists
believe that an explanation for and the prediction of both the breeze and the
turbulence can be found through an understanding of solutions to the Mavier-
Stokes equations. Although these equations were written down in the 15th
Century, our understanding of them remains minimal. The challenge is to
make substantial progress toward a mathematical theory which will unlock the

zecretzs hidden in the Navier-Stokes equations.
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* The Millennium Problems

MNavier-Stokes Equation
............................................................................................................................................................................................. r Official Problem Description —

Waves follow our boat as we meander across the lake, and turbulent air Charles Fefferman

currents follow our flight in @ modern jet. Mathematicians and physicists ¥ Lecture by Luis Cafarelli (video)

believe that an explanation for and the prediction of both the breeze and the
turbulence can be found through an understanding of solutions to the Navier-
Stokes equations. Although these equations were written down in the 19th
Century, our understanding of them remains minimal. The challenge i=s to
make substantial progress toward a mathematical theory which will unlock the

secrets hidden in the Mavier-Stokes equations.

A fundamental problem in analysis is to decide whether such smooth, physically
reasonable solutions exist for the Navier-Stokes equations. To give reasonable lee-
way to solvers while retaining the heart of the problem, we ask for a proof of one
of the following four statements.

(A) Existence and smoothness of Navier—Stokes solutions on B?*. Take v >
0 and n = 3. Let u®(z) be any smooth, divergence-free vector field satisfying (4).
Take f(x,t) to be identically zero. Then there exist smooth functions p(x.t), uy(x, 1)
on B % [0,00) that satisfy (1), (2), (3), (6), (7).

(B) Existence and smoothness of Navier—Stokes solutions in B*/Z*, Take
v =0 and n = 3. Let u”(x) be any smooth, divergence-free vector field satisfying
(8); we take f(x,t) to be identically zero. Then there exist smooth functions p(x. ),
ug(z,t) on B x [0, 00) that satisfy (1), (2), (3), (10), (11).

(C) Breakdown of Navier—Stokes solutions on B?, Take v = 0 and n = 2.
Then there exist a smooth, divergence-free vector field v°(z) on B® and a smooth
f(x,t) on B x [0,00), satisfying (4), (5), for which there exist no solutions (p, u)
of (1), (2), (3), (6), (7) on B? x [0, oc).

(D) Breakdown of Navier—Stokes Solutions on B*/Z®. Take v > 0 and
n = 3. Then there exist a smooth, divergence-free vector field v°(z) on B* and a
smooth f(r,t) on B* x [0, o), satisfying (8), (9), for which there exist no solutions
(p,u) of (1), (2), (3), (10), (11) on RS X [0,00).




Turbulent structure at many scales

Soap film experiment

M. A. Rutgers, X-I. Wu, and W. I. Goldburg.
"The Onset of 2-D Grid Generated Turbulence in Flowing Soap Films," Phys.
Fluids 8, S7, (Sep. 1996).



Turbulent flows are multiscale

StI‘UCture at many Scales . Soap film experiment

— Yet, Prandtl’s theory (1921) of wall-
bounded turbulence does not
represent this structure

— Thus it cannot influence the friction
factor and velocity profile, in this
theory!

— Is this really plausible?

M. A. Rutgers, X-l. Wu, and W. I. Goldburg.
"The Onset of 2-D Grid Generated Turbulence in
Flowing Soap Films," Phys. Fluids 8, S7, (Sep.
1996).



Pipe flow

r|

VR I

Re = Roughness = — Friction Factor,tf =
174 ) .
Re = Reynolds number v = viscosity/density = kinematic viscosity

_
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Nikuradse’s pipe experiment (1933)
to measure the friction factor

Pipe diameter is 25-100 mm f — AP/ lp U2

Pipe length is ~ 70 diameters Monodisperse sand grains
0.8mm glued to sides of pipe

vr o
om
- f L
ey | bl el s 2 -
it —
Figure 3.- Test apparatus,

em = electric motor h = outlet valve
kp = centrifugal pump zr = feed line
vk = supply canal mb = measuring tank
wk = water tank gm = velocity measuring device
vr = test pipe ksv = safety valve on water tank
zl = supply line sb1 = gate valve between wk and kp

tr =
Sf; & gsgt;fcig.lwp;{);e sbz = gate valve between wk and 2zr
g = Beab g1 = baffles for equalizing fow Figure 4,- Microphotograph of sand grains which produce uniform roughness.

(Magnified about 20 times,)



The main message of my talk:

e Multiscale structure of turbulence reminiscent of critical phenomena
at phase transitions ...

— Pipe flow turbulence in smooth and rough pipes behaves as if governed
by a non-equilibrium critical point

e Spectral connection.
— Usually we talk about either spectral properties or large-scale flow
properties, such as the friction factor or mean velocity profile (MVP)
e Standard theory for wall-bounded turbulent flows does not connect these

— We show that these are directly linked. The friction factor and MVP
depend upon the functional form of the energy spectrum.

e We can predict how f should behave in 2D where there are two types
of cascade

— We observe agreement with DNS and soap film experiments

e Prandtl theory cannot make these predictions ... and therefore is
incomplete. It does not have a way to represent the nature of the
turbulent state.



Outline

Introduction
— Critical phenomena, large fluctuations, data collapse

Analogies between turbulence and critical phenomena
— Beyond power law scaling, data collapse

Turbulent pipe flow and criticality in 3D
— Nikuradse data
—  Friction factor depends on spectral structure

Turbulent pipe flow and simulations in 2D

— In 2D there are two cascades and different forms of spectrum >
new predictions for friction factor

— Experimental results in 2D soap films

Preliminary data on spectral connection in 3D turbulence

Mean velocity profile from the spectral link



Turbulence as a critical
phenomenon



Is turbulence a critical phenomenon?

e Common features
— Strong fluctuations
— Power law correlations

e Critical phenomena now solved
— Widom discovered “data collapse” (1963)

— Kadanoff explained data collapse from coarse-graining
(1966)

— Wilson systemised and extended Kadanoff’'s theory (1971)

e Turbulence still unsolved

— Can we repeat the pattern of discovery exemplified by
critical phenomena?



Critical phenomena in magnets
1
T %—2 —T

M~ My|T —-T.|/T.]? for H=0asT — T, Critical isotherm: M ~ H/® for T =T,

e Widom (1963) pointed out that both these results
followed from a similarity formula:

M(t,h) = [t]° far (R/t2)

where t = (T'—T.)/T. for some choice of exponent A and scaling function f,,(x)



Critical phenomena in magnets

M(t, h) = [t|° far (h/t2)

where t = (T'—T..)/T.. for some choice of exponent A and scaling function f;;(z)

e To determine the properties of the scaling function
and unknown exponent, we require:

— fu(z) = const. forz =0

e This gives the correct behaviour of the magnetization at zero
field, for T < T,

— For large values of z, i.e. non-zero h, and t 20, we need the t

dependence to cancel out.
Thus f,(z) ~ 21/9, 2 — oo.

Calculate A: t dependence will only cancel out if 3 — A/§ =0
M = [t|P far (h/[t17°)

e This data collapse formula connects the scaling of
correlations with the thermodynamics of the critical
point



Critical phenomena in magnets

e M(H,T) ostensibly a
function of two
variables

Scaled magnetization

e Plotted in appropriate
scaling variables get
ONE universal curve

Scaled temperature

FIG. 1. Experimental MHT data on five different magnetic ) Sca"ng va ria bles
materials plotted in scaled form. The five materials are CrBrs, - I

EuO, Ni, YIG, and PdsFe. None of these materials is an ide- |nv0|ve Crltlcal
alized ferromagnet: CrBry has considerable lattice anisotropy,

EuO has significant second-neighbor interactions. Ni is an exponents
itinerant-electron ferromagnet, YIG is a ferrimagnet, and

Pd;Fe is a ferromagnetic alloy. Nonetheless, the data for all

materials collapse onto a single scaling function, which is that

calculated for the d=3 Heisenberg model [after Milosevic and

Stanley (1976)]. Stanley (1999)



Scale invariance in turbulence

| « Eddies spin off other

I eddies in a Hamiltonian
process.

— Does not involve friction!

— Hypothesis due to

; Richardson, Kolmogoroy, ...
= « Implication: viscosity will
. not enter into the
equations




Scale invariance in turbulence
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K Compute E(k), turbulent

kinetic energy in wave
number range k to k+dk
— E(k) depends on k

— E(k) will depend on the rate at
which energy is transferred
between scales: ¢

Dimensional analysis:

_ E(k) ~ g2/3 k-5/3



Scale invariance in turbulence

e Compute E(k), turbulent
kinetic energy in wave
number range k to k+dk
— E(k) depends on k

— E(k) will depend on the rate at
which energy is transferred
between scales: ¢

e Dimensional analysis:

— E(k) ~ g2/3 k-5/3

A.N. Kolmogorov



The energy spectrum

Integral scale
E(k) = V2 d(u,?)/dk

Inertial range
L—5/3

0.001

107
E(k)
10~°

Dissipation

10—12

0.1 1 10 100 1000 104 10°



What are the analogues of data
collapse for turbulence?

Power law scaling is not enough!



Critical phenomena and turbulence

PHYSICAL REVIEW E VOLUME 50, NUMBER 6 DECEMBER 1994

Analogies between scaling in turbulence, field theory, and critical phenomena

Gregory Eyink and Nigel Goldenfeld
Physics Department and Beckman Institute, University of Illinois at Urbana-Champaign, 1110 West Green Street,
Urbana, Illinois 61801-3080
(Received 16 June 1994)

We discuss two distinct analogies between turbulence and field theory. In one analog, the field theory
has an infrared attractive renormalization-group fixed point and corresponds to critical phenomena. In
the other analog, the field theory has an ultraviolet attractive fixed point, as in quantum chromodynam-

E(K) ~ k-5/3 G(k) ~ k-2

Energy spectrum Spin correlations

Turbulence

Critical phenomena

space separation r
viscosity v
energetic length scale L

mean dissipation €

dissipation wave number k =7,

velocity correlation function
S;ir)={[vir'+r)—vir)]?)

intermittency exponent p

wave number k

temperature variable r—r,

uv cutoff A
(or inverse lattice spacing a ')

stiffness constant K

corrclation length §

spin correlation function
Clk)=F _ a‘e™(a(rlol0))

correlation exponent 7,



Critical phenomena and turbulence

Critical Turbulence
phenomena
Correlations G(k)~k2 E(k)~k5/3
Large scale M(ht) = |19 fy (ht~59) 5
thermodynamics '




What is analogue of critical point
data in turbulence?

e Need analogues of the fwo scaling limits
T>T.,andH->0

e Experimental data on a real flow

— Systematic in same geometry over many decades
of Re

— Systematic variation over the other parameter

e The other parameter
— Should couple in some way to the turbulent state
— Key idea: boundary roughness can play this role



Nikuradse’s pipe experiment (1933)
to measure the friction factor

f=AP/lpU?

Pipe diameter is 25-100 mm

Pipe length is ~ 70 diameters Monodisperse sand grains
0.8mm glued to sides of pipe

m
t L
_—_4;.. A [
Figure 3.- Test apparatus.,

em = electric motor h = outlet valve

kp = centrifugal pump zr = feed line

vk = supply canal mb = measuring tank

wk = water tank gm = velocity measuring device

vr = test pipe ksv = safety valve on water tank

zl = supply line sb1 = gate valve between wk and kp

str = vertical pipe

fr = overflow pipe

v mtrap gl = baifles for equalizing flow Figure 4,- Microphotograph of sand grains which produce uniform roughness.
(Magnified about 20 times,)

sb2 = gate valve between wk and zr



Friction factor in turbulent rough pipes
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Strickler scaling

Gioia and Chakraborty (2006)
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FIG. 1. Nikuradse’s data. Up to a Re of about 3000 the flow is
streamlined (free from turbulence) and f ~ 1/Re. Note that for
very rough pipes (small R/r) the curves do not form a belly at

intermediate values of Re. Inset: verification of Strickler’s em-
pirical scaling for f at high Re, f ~ (r/R)}/3.



Roughness-induced criticality is
exhibited in Nikuradze data



Scaling of Nikuradse’s data

Critical
Turbulence
phenomena
Temperature t—0 1/Re — 0
control
Field control =0 r/D =0




Scaling of Nikuradse’s Data

In the turbulent regime, the extent of the Blasius
regime is apparently roughness dependent.
— f~Rel4asr/D>0

At large Re, f is independent of roughness.
— f~ (r/D)/3 for Re 2 o

Combine into unified scaling form
— f = Re1/4 g([r/D] Re%)

e Determine o by scaling argument: Re dependence must cancel out at
large Re to give Strickler scaling

— Exponent 0 = 3/4 and the scaling function g(z) ~ z1/3 for z > o

f = Re'1/4 g([r/D] Re*4)



Scaling of Nikuradse’s Data
e Isittrue that f = Re1/4 g([r/D] Re*4)?

— Check by plotting f Rel/4 vs. [r/D] Re*4
e Do data as a function of two variables collapse onto a

single universal curve?
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Intermittency corrections

Mehrafarin & Pourtolami (2008)
1. Definition of intermittency exponent

<5UZZ> . (<8l>l)2f3 " l2f3+7y
2. Momentum transfer r~2 s~ a=3+Z

3. Flow transformation under rescaling
° Boundary Iayer ViSCOSity ~rv, (length X velocity), i.e., as ~ ol

f(z%,z—ﬂ—l Re) - zﬂff(%,Re)

4. Putting it all together

£= Re-2+37/(8+37) g(i Reﬁf(8+37;))
R




Data collapse in Nikuradse’s data

PHYSICAL REVIEW E 77, 055304(R) (2008)

k endis
PRL 96, 044503 (2006) PHYSICAL REVIEW LETTERS 3 FEERUARY 3006

Intermittency and rough-pipe turbulence
Roughness-Induced Critical Phenomena in a Turbulent Flow

Nigel Goldenfeld Mohammad Mehrafarin® and Nima Pourtolami
Department of Physics, University of Hlinots ar Urbana-Champaign, 1110 West Green Street, Urbana, Illinois, 61801-3080, USA Department of Physics, Amirkabir University of Technology, Tehran 15914, Iran
(Received 16 September 2005; published 30 January 2006) (Received 23 February 2008; published 15 May 2008)
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spectral estimates



By simply measuring the pressure
drop across a pipe, Nikuradse in
1933 measured the anomalous
spectral exponents (intermittency
corrections) 8 years before
Kolmogorov’s spectral theory!

This is completely analogous to determining
anomalous critical exponents in phase
transitions from measurements of the M(H)
scaling at T,



Roughness-induced criticality

Multiscale structure of turbulence reminiscent of critical
phenomena at phase transitions ...

What would be the signatures of turbulence as a dynamic
critical phenomenon?

Roughness-induced: laminar pipe flow is linearly stable, but
boundary roughness is a relevant variable, coupling to turbulent
state.

— Symmetry is the enemy of instability
Critical: theory predicts new scaling laws in Re, roughness (r)

Spectral connection: macroscopic flow properties directly
connected to correlations in fluctuations

— Analogous to non-equilibrium fluctuation-dissipation theorems



Prediction of friction factor from
momentum transfer



Prandtl Theory

0.01

The friction factor can be expressed in terms

of the shear at the wall:
ST

pU?

f =

To connect 7and {J must know the velocity -
profile. Dimensional analysis and assumption of
complete similarity suggests:

Oyt =

VT/P
Y

g(Re); g(Re) — const

0.001

Prandtl (Smooth)
Colebrook-White R/r=507
Colebrook-White R/r=60

Nikuradze
Nikuradze

G
L e ®

00 oo o 000

R/ir=507 ©
Rr=60 -

Honoob

10°

10°
Re

108

Solve and determine the value of 7 such that the average velocity from the

profile is equal to U :

1

— =>1In

vai

1
K

1

(Re\/f

)

B

The Colebrook-White equation generalizes this to rough pipes by introducing an
offset to the viscous layer position.



Momentum transfer
e Theory of Gioia and Chakraborty (2006)

— Roughness and dissipation scale filter turbulent structures
near the wall
— Momentum transfer between wall and flow

e structures on scales smaller than the filter scale have little
momentum contrast

e structures on scales much larger than the filter scale have too
small a vertical component to make significant contribution

Momentum Transfer
Boundary Line

n ~ RRe 3/4



The spectral connection

E(k) = %2 d(u2)/dk

Us = \/ [ E(k)dk

0.001

107
E(k)
10~°

10—12

0.1 1 10 100 1000 104 10°



Scaling argument for Blasius and Strickler regimes

e fr~vpVu,/pV2~ u/V

— Contribution to friction factor
from dominant eddy on scale
of roughness element, s=r+an

f X ug fl,f k)dk )2
e K41: Use E(k) ~ k*5/3
1/3
|~ (% +abRe_3/4)

e Large Re: s ~ rand f ~ (r/D)/3 Strickler law predicted!
e Small Re: s ~n and f ~ Re'1/4  Blasius law predicted!

e Friction factor formula satisfies roughness-induced
criticality scaling relation

(Gioia and Chakraborty 2006)



Evaluation of friction factor

e Now include the dissipation range and
integral scale
=it Ve oor

s/R

r= ([T ore e ax) )

where K = 3,5/R=r/R+ abRE¥* and b =
- bquation (1) gives f as an explitit function of
ynolds number Re and the roughnessiV/R.

Dissipation range Integral scale



Friction factor contributions

Dissipative ! Inertial

r

Gioia and Chakraborty (2006)



Boundary layer structure

e How many adjustable
parameters in Gioia-

Chakraborty model?
— a = 5, so that thickness of P
viscous layer ~ 5 = |
— b measured to be 11.4 =5
(Antonia and Pearson (2000) | — ..!

e Model essentially

completely determined.

e But: scale of curves do not
match datal

— Need to have proper
integration of theory with
velocity profile




Testing the Spectral Connection

The central testable difference between momentum
transfer theory and the Prandtl theory is the dependence of
the friction factor on the energy spectrum.

How can we determine whether the friction factor depends
on the turbulent energy spectrum?



Testing the Spectral Connection
The central testable difference between momentum

transfer theory and the Prandtl theory is the dependence of
the friction factor on the energy spectrum.

How can we determine whether the friction factor depends
on the turbulent energy spectrum?

We must find a flow with a different energy spectrum!



Difference between Turbulence in a
Two-Dimensional Fluid and in a

Three-Dimensional Fluid

T. D, LEE
Department of Physics, University of California, Berkeley, California
(Received January 19, 1951)

HE difference between a two-dimensional and a three-
dimensional fluid can easily be seen from the vorticity

equation given as |
0+ (v, Vo =rAut, Vv, (1)

where ®, v, and » are the vorticity, velocity, and kinematic
viscosity of the fluid. In the two-dimensional case, (W, V)V is
identically zero. Hence, if one neglects viscosity in a system
moving with the fluid, the vorticity never changes, and the
scattering of energy between eddies does not lead to any change in
vorticity. This conservation law forbids the fulfillment of an
ergodic hypothesis for a two-dimensional fluid. Indeed, if one

Enstrophy = mean squared vorticity

T.D. Lee, Journal of Applied Physics, Vol. 22, p.524 (1951)



THE PROBABILITY DISTRIBUTION OF u(x) 187

dimensienal motion we should beware of assuming too close a
relation between two- and three-dimensional turbulence). Hence
for a motion with zero viscosity, the integrals

J‘: E(x)dx, j : x*E(x) dx

are constant; even when v is finite but small the integrals will be
constant until such time as energy has been transferred to high
wave-numbers at which viscous forces are significant. The effect of homogeneous
the non-linear term of the equation will be to transfer energy over turbulence
an increasingly wide range of wave-numbers, and if we imagine
the initial state to be such that all the energy lies in the range
0 <k < «’, one of the effects of the non-linear term will be to transfer
energy to wave-numbers x > x”. But if there is a transfer of energy

G.K.BATCHELOR

The theory of

across x=x', the constancy of J.: x*E(k)dx demands that there

should be an even greater flow of energy in the opposite direction

1953

THE

PHYSICS OF FLUIDS VOLUME 10, NUMBER 7 JULY

Inertial Ranges in Two-Dimensional Turbulence

RoBErT H. KRAICHNAN

Peterborough, New Hampshire
(Received 1 February 1967)

Two-dimensional turbulence has both kinetic energy and mean-square vorticity as inviscid constants
of motion. Consequently it admits two formal inertial ranges, E(k) ~ €3k~ and E(k) ~ 5*/3k—3,
where ¢ is the rate of cascade of kinetic energy per unit mass, 7 is the rate of cascade of mean-square
vorticity, and the kinetic energy per unit mass is [¢®E(k) dk. The —3 range is found to entail

1967




Cascades in 2D turbulence

e Energy cascade

— Direction of energy flow is from small to large
scales

E(k) o €2/3=5/3

o Enstrophy cascade

— Direction of enstrophy flow is from large to small
scales

E(k) oc A2/33



Momentum-transfer/roughness-induced criticality theory
vs. Prandtl theory

* Prandtl  Momentum-transfer

— Assumes complete — Characteristic scale set by larger of
similarity - no characteristic = Kolmogorov scale or wall-roughness
scale



Momentum-transfer/roughness-induced criticality theory
vs. Prandtl theory

* Prandtl « Momentum-transfer
— Assumes complete — Characteristic scale set by larger of
similarity - no characteristic = Kolmogorov scale or wall-roughness
scale > Power-law velocity profile in
> Law of the wall Intermediate asymptotic regime
> Zero roughness is not > Zero roughness is a singular limit
recognized to be (roughness-induced criticality)

singular



Momentum-transfer/roughness-induced criticality theory
vs. Prandtl theory

* Prandtl  Momentum-transfer

— Assumes complete — Characteristic scale set by larger of
similarity - no characteristic = Kolmogorov scale or wall-roughness

scale > Power-law velocity profile in
> Law of the wall Intermediate asymptotic regime
> Zero roughness is not > Zero roughness is a singular limit
recognized to be (roughness-induced criticality)
singular
— No representation of — Nature of underlﬁin? flow is
underlying nature of represented by the form of the energy

turbulent flow Spectrum:



Momentum-transfer/roughness-induced criticality theory
vs. Prandtl theory

* Prandtl  Momentum-transfer

— Characteristic scale set by larger of

— Assumes complete
Kolmogorov scale or wall-roughness

similarity - no characteristic

scale > Power-law velocity profile in
> Law of the wall Intermediate asymptotic regime
> Zero roughness is not > Zero roughness is a singular limit
recognized to be (roughness-induced criticality)
singular
— No representation of — Nature of underlﬁin? flow is
underlying nature of represented by the form of the energy
turbulent flow spectrum:
« Unable to make « E.g. Vortex stretching present or
redictions for friction absent?
actor in 2D « 3D — forward energy cascade
* No connection with 2D —forward enstrophy and/or
spectral structure of inverse energy cascade

turbulence



Atmospheric turbulence

Wavenumber (radians m?)
101

POTEMNTIAL
TEMPERATURE
{Dﬂl i rﬂl"':l

— .

Spectral Density m
100
|

104 Wavelength (km) 102

G. D. Nastrom and K. S. Gage, “A Climatology of Atmospheric Wavenumber
Spectra of Wind and Temperature Observed by Commercial Aircraft”, Jour.
Atmos. Sci. vol 42, 1985 p953



Quark-gluon liquid at RHIC
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2D friction factor scaling in r=> 0 limit

Nikuradze's Pipe

In 3D the inertial range, energy is Exit Effects
conserved. » — ‘
Rate of energy transfer between . T .
ScaleS: e 70 Diameters

E(k) o 2/3=5/3 E(k) 21—«
In 2D, enstrophy is conserved. _
Constructing a spectrum from the Momentum transfer theory predicts:
rate of enstrophy transfer A

(k) o< \2/3k3 f Rell—@)/(1+a)

In 2D, the friction factor in the Blasius regime will
have an exponent that depends on the cascade



Generalized momentum transfer theory

E(k) oc U?LU-)fe

s o< Ul(s/L) @ Y/3
Re, = u,n/v ~ 1, or u, < v/n.

u, o U Rell=®)/(1+a)

f ~x He{l—ﬂ)f(l—l—ﬂ)
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2D friction factor scaling in both Re and r

Friction Factor by Reynolds Number and Roughness in 2D

. ~ R=10"
™~ ~— 1R=103

N — rR=102 |]

\ —— 1/R=10"1

10°

10° 10"
Re

Enstrophy cascade
f ~ Re1/2 (Blasius)
f ~ (r/D) (Strickler)

10° |-
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10°F

Friction factor in 2D for the inverse cascade

10° 10° 10"
Re

Inverse cascade
f ~ Re-1/4 (Blasius)
f ~ (r/D)1/3 (Strickler)



Simulations

2D turbulence via direct numerical simulation
Pressure at cell center, velocity at cell walls.
Spectral method to solve pressure equation for incompressibility:

V2P =(V-V)/At

SMART (Sharp and Monotonic Algorithm for Realistic Transport)
algorithm for advection. 3" order nonlinear: preserves maxima
and minima (Gaskell & Lau 1988)

Rough walls — conformal mapping.



Conformal Mapping

 Navier-Stokes equation before mapping:

v
%—t+V-VV=VV2V—VP

e Map coordinates: -+ iy = f(u + iv)

V = (Yo Ve — 2, V)0 + (2, Vy — Yo Vi)V

12 92 2 A = TuYuv T+ Ty Tyw
|g | ey -+ Ly —
xuajuv T xvyuv

 Navier-Stokes equation after mapping:
oV _ _ _|V|? 2v

/2 2
— +(V-V)V =vV?V + A+
19" ot ( ) g’ |2 g’ |2

A+ (V xV), - VP



Meaning of New Terms

OV _ _ _ |‘f|2 QU _
9P =+ (V- V)V =vV7V + e T |g,|2AL(V x V). = VP

e Two new body forces as a result of the mapping:

|\7|2 A Body force due to acceleration around contours
g’ |2 of the boundary

Body force due to curvature in the map

2v AL(V x V), corresponding to vorticity of the real-space
19" |? velocity field.



Representation of Roughness

e Want to generate walls with a
particular lengthscale or set of
lengthscales using the conformal e
map. B

o At lower boundary (v=0), try:

1kw

Z =W +re
o Coordinate singularities when

g'|? = (1 — rksin(ku)e ") + (rk cos(ku)e ") = 0
ku = g + nﬂ',e_kv — rk

- rk <1 in order to prevent singularities inside the
computational domain.
~ Parameters r and k.



Simulations
Entry EffeCtS Nikuradze's Pipe

We use periodic boundaries, with Exit Effects

a pressure drop applied to the » hressure o ‘

pipe to keep the average velocity
Grid generated turbulence:

constant — this is the friction
factor pressure drop.
Simulate with a grid for several pipe
transits, then remove the grid and
start measuring the friction factor.

70 Diameters

Simulation

Generating Turbulence
Two ways:
« Roughness generated
. Inverse cascade
. Grid generated
« Enstrophy cascade




Direct numerical simulations

e Rough walls domain
mapped to a rectangular
one by conformal maps

e Rough walls generate
turbulence




Spectra

10*
._‘.“k_3
10°
...... “hGrid-generated |
100 ".,“turbulence
o4
2| 2 N
1071 Roughness-generateci.'*-\
turbulence k
10™ '
o Good verification of | \
inverse and enstrophy 0.1 1 10 100 1000
cascade in our k

simulations.



Blasius friction factor

Blasius scalings
compare well with
analytic predictions
from momentum
transfer theory

Grid-generated
Measured: -0.42+0.05
Expected: -1/2

Roughness-generated
Measured: -0.22+0.03
Expected: -1/4

0.016 -
j T
N
0.008 K © G
L \-NQ ~ ) | 'E!
\Q QE_1
i . il
| Inverse o O N
0.004 r Tk Z
| Enstrophy © e @ ]
Re—O.ZZ !
A Re—0.42 ________
0.002: ——

2000 4000 8000 R16000 32000 64000
e

FIG. 2: Scaling of the friction factor with respect to Re for
inverse cascade and enstrophy cascade dominated flows in 2D.
The roughness is r/R = 0.067, and the data have been aver-
aged over a time of b pipe transits.



Data collapse in 2D
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FIG. 3: (Color online). The bottom inset shows the enstrophy
cascade data collapse of the friction factor curves for nondi-
mensional roughness 0.05 (o), 0.08 (O), 0.1 (A), and 0.2 (V)
over a range of Reynolds numbers from 1000 to 80000. The
top left insent shows the unscaled friction factor data. The
top right inset shows the energy spectrum at r/R = 0.08 and
Re = 80000. The straight lines correspond to k=52 and k2.

Rough pipe simulations with
small amount of random
noise 2> enstrophy-
dominated cascade

— Data collapse using enstrophy
predictions works well

f = Re_l/Qg(%Rel/z)

Data for non-dimensional roughness
from 0.08 to 0.2

Reynolds numbers up to 80000.



Implication for Blasius regime

There is a Blasius regime in 2D pipe flow
It is different from that in 3D

The scaling with Re depends on the energy spectrum of
turbulence

- The scaling result is correctly predicted by momentum-transfer
theory for both inverse energy and forward enstrophy regimes

Prandtl theory is silent about making a prediction in 2D

- Prandtl theory makes no prediction about the dependence of the
friction factor in the Blasius regime on energy spectrum



Implication of data collapse

Data collapse occurs in 2D friction factor as well as 3D
friction factor

The data collapse is predicted by roughness-induced
criticality

2D and 3D rough-pipe turbulence behave as if
governed by a non-equilibrium critical point

Boundary roughness is a relevant variable for
understanding pipe flow turbulence
- The zero roughness limit is a singular one



Experimental results in 2D

Experiments at Pittsburgh and
Bordeaux using turbulent soap-films






Nod

Laser Doppler Velocimetry

e Solution is seeded with particles of size
0.4um

e For a fixed position, LDV measures
vertical velocity u; = wu(t;) and horizontal
velocity v; = wv(t;) of particles passing
through the measuring volume

e From velocity times series, it is possible to
calculate:

— Time-averaged velocity (u), (v)

— Reynolds stress

X TrRe = p{(u — (u))(v — (v)))

— Power spectrum F11 and E»o

e LDV can be moved stepwise in horizontal
(y) direction (stepsize can be as small as
10pum)
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Figure 2: The mean velocity profile u(y) in turbulent soap-film flows, from LDV measurements. (a)
Typical plots of u(y) in a film of width w = 12mm. (b) Typical plots of u(y) close to one of the wires, in the
viscous layer where du(y)/dy — (& and the thickness of the film is uniform and = 10 ym (Supplementary
Information). The velocity profiles correspond to Re = 7803, 17648, 25912, Points on the film closer than
e« 2(um (the diameter of the beam of the LDV) from the edge of the wire cannot be probed with the LDV
thus the first data point, which we position at ¥ — 0, is at a distance of = 20um from the edge of the wire.
The apparent slip velocity is likely to represent 3D and surface-tension effects associated with the complex
flow at the contact between the film and the wire.



. ¢ Pittsburgh:
] w = 0.5cm
¢ w=1.1cm
1/2 ® A w=1.7cm
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Figure 3 Log-log plot of the frictional drag vs. the Reynolds number in 2D turbulent soap-film flows
of Reynolds number 1300 < Re < 25000, from independent expenments performed in Pittsburgh and
Bordeaux. The cloud of data points may be represented as a straight line of slope 12, consistent with the
scaling J"1 X Re~ "2, The straight dashed line of slope 1,4 coresponds to the Blasius empirical scaling,
f oc Re™ ',



Conclusion of experiment

Friction factor exponent in Blasius regime in 2D enstrophy-
dominated flow is /2, not V4

— Clearly distinct from what happens in 3D

Friction factor exponent in Blasius regime in 2D inverse cascade
is 1a
— Clearly distinct from enstrophy-dominated flow

Results in agreement with theoretical prediction

Macroscopic flow property (friction factor) directly related to
microscopic spectral property

— Predicted by Illinois theories of roughness-induced criticality and
momentum transfer



The mean velocity profile
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Figure 5. Velocity profiles over the full Reynolds number range. Figure from Shockling et al. (2006).



526 7. I. Barenblatt and V. M. Prostokishin

The mean
r ﬁf{ velocity
| 7 profile

v | "
]
T 0
# -
1 8 &?h U ~N ya
) where a ~ 1/In Re
A
a
]| | ; ] SL ‘ ; l ';I . ]I]
Iny

Fiavre 3. The experimental points in reduced coordinates (o Ins) settle down, for large g,
close to the bisectrix of the first quadrant, confirming the quasi-universal form of the scaling law.,
H.fe=4x10% K Re=681x107: 0, Re=02x107; @, Be = 16T = 108 J, Be = 2,38 = 104, W,
Re=43x 104 F Re=105= 105", Fe =205 10¥*: =, Ke = 396 x 10°; o, e = 726 % 105 &,
RBe=111x10°, % Ke = 1.530x 10°; +,Re = 1999 x 10%; x, Re= 2.35 « 10%; o, Ke = 2.79 » 10°;
& Rew 324 106,



Spectral theory of mean velocity profile

e Prandtl theory and other approaches do not have a
way to represent the nature of the turbulent state

e We derive a differential equation for the mean
velocity profile in terms of the energy spectrum

e Outcome is that every intermediate asymptotic
scaling regime in the mean velocity profile has a
counterpart in the spectral structure



Spectral theory of mean velocity profile

acting on a layeratyis

_ /
T, = K. pyv,u'(y)
e The shear stress in
terms of the spectrum is

r, = K2pP ()

Ve u(y+s) / e Turbulent shear stress

Us = \/fl/s E(k)dk  The total shear stress
(turbulent + viscous) is

.+ pru' = 79(1 — y/R)
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Anatomy of the mean velocity profile
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Spectral connection

Not present in Prandtl theory

Turbulence is a critical point

Fluctuations related to large-
scale flow properties
— analogous to fluctuations

related to thermodynamics
in phase transition theory

Predictions about data
collapse in (Re, r) observed
in Nikuradze’s data and
tested in 2D DNS

Momentum transfer calculations
explicitly involve the ener?y
spectrum in the formulae for the
friction factor

Friction factor scaling exponents
predicted in 3D and 2D

Predictions about Blasius regime
in 2D enstrophy and inverse-
cascade dominated flows tested
in DNS and turbulent soap film
experiments

Spectral connection verified in
preliminary data in 3D




What about the million dollars?

Virtually everything we know about turbulence did
NOT come from the Navier-Stokes equations!!!

They seem to be a bad place to start a theory

We can "understand” turbulence without proving all
the theorems that the Clay Institute requires

Proving all the theorems that the Clay Institute
reqlglires may not allow us to “"understand”
turbulence

— in the sense of relating microscopic spectral properties with
macroscopic flow properties
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