# Spatio-temporal structures of solar wind turbulence

**Yasuhito Narita** 

TU Braunschweig, Germany

## Magnetohydrodynamic turbulence

Navier-Stokes eq.

$$(\partial_t - \nu \nabla^2) \, \vec{v} = -\vec{v} \cdot \nabla \vec{v} + \vec{b} \cdot \nabla \vec{b} - \nabla p$$

$$\text{Viscosity} \qquad \text{Advection} \qquad \text{Magnetic tension} \qquad \text{Total pressure grad.}$$

$$\text{(thermal and magnetic)}$$

Induction eq. with Ampère's law

$$(\partial_t - \eta \nabla^2) \, \vec{b} = -\vec{v} \cdot \nabla \vec{b} + \vec{b} \cdot \nabla \vec{v}$$
 Resistivity Frozen-in magnetic field

**Under conditions:** 

$$\nabla \cdot \vec{v} = 0$$
 ,  $\nabla \cdot \vec{b} = 0$ 
Incompressibility No magnetic monopole

# Near-Earth interplanetary space



Solar wind is the only accessible natural laboratory of astrophysical plasma turbulence.

# Solar corona observed by SOHO spacecraft



## Large-amplitude fluctuations in the solar wind



Are the fluctuations temporal variations or spatial structures swept by the flow?

#### Turbulence in the solar wind?

Frequency spectrum of magnetic field fluctuations



#### **Motivations:**

- 1. Is there any dispersion relation in solar wind turbulence?
- 2. What does the 3D spatial structure look like?

We can answer these questions using multi-spacecraft measurements!

#### The Cluster mission



Wavelengths, propagation speeds and directions can be determined (interferometric method).

Taylor's hypothesis is no more necessary.



### Energy distribution in the wave vector domain





#### Two discoveries:

- 1. Asymmetry around the large-scale magnetic field
- 2. Anisotropy between parallel and perpendicular directions

### More examples of 3D energy distributions



Axial asymmetry exists on various spatial scales.

Anisotropy prefers the direction perpendicular to the large-scale magnetic field.

## Fluctuation geometry in the coordinate space



# Is there any dispersion relation?



# Summary

 $\omega$  - k dependence of MHD turbulent fluctuations was determined for the first time using Cluster data.

Origin of anisotropy: Perpendicular cascade to the magnetic field?

Origin of axial asymmetry: -

- Nature of MHD turbulence?
- Radial expansion of solar wind?
- Field structure in the solar corona?

#### My question to you:

"What does the energy distribution for fluid turbulence look like in the  $\omega$  - k domain?"