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Drag Reduction

� Toms (1946): Monochlorobenzene with 0.25% (by weight) of
polymethylmethacrylate

� Reduction in the pressure gradient across the pipe, on the
addition of polymers, for the same volumetric flow rate

� Drag Reduction(in percentage) DR ≡
�

∆Ps−∆Pp

∆Ps

�
× 100



Reduction of small scale structures

� Turbulent jet of water with 50ppm polyethylene oxide at
Re ∼ 225
[Turbulence structure in a water jet discharging in air, J.W.
Hoyt and J.J. Taylor, Phys. Fluids, 20, S253 (1977).]



Energy spectra

[Effect of polymer additives on the small-scale
structure of grid-generated turbulence, W.D.
McComb, J. Allan, and C.A. Greated, Phys.
Fluids, 20, 873 (1977).]

� Grid Reynolds number ReM = 7.6× 103;

� For low polymer concentrations (50 and
100 ppm) there is no significant change in
the energy spectrum; at somewhat higher
concentrations(500 and 1000ppm) the
spectra fall more steeply.



Eigenvalues of the strain tensor

[A. Liberzon, et al., Phys. Fluids, 17, 031701 (2005).]

� Length:140mm, Width:120mm, Disk Dia.:40mm, Observation
volume:10× 10× 10mm, Reλ = 38.

� Regions of large strains reduced on the addition of polymers.



Structure function: S2(r)

N.T. Ouellette, H. Xu, and E. Bodenschatz, ICTR website, (2007).

� c = 5ppm,Reλ = 290,Wi = 3.5,

� Small scale structures are modified on the addition of
polymers.



Polymer Properties

Typical drag-reducing polymer:
Polyethylene oxide N×[-CH2-CH2-O-]

� Degree of polymerization (N) � 104

� Molecular weight � 4× 106 amu

� Zimm relaxation time � 10−4s

� RMS end-to-end distance at maximal extension � 34µm



Modelling polymer solutions

� Navier-Stokes(NS) with Polymer Additives:
3D, unforced, incompressible, NS with additional stress
because of polymers:

∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u +∇ · T ,

where
� u(x, t): fluid velocity; point x; time t;
� ν: Kinematic viscosity of the fluid;
� T : polymer contribution to the fluid stress;

∇ · u = 0 enforces incompressibility.



Modelling polymer solutions

� Finitely Extensible Nonlinear Elastic-Peterlin(FENE-P) model

∂Cαβ

∂t
+ (uγ∂γ)Cαβ = (∂γuα)Cγβ + Cαγ(∂γuβ)− 1

µ
Tαβ .

[”Dynamics of polymeric liquids”, Bird, et al.]

� c = µ/(ν + µ); c = 0.1 � 100ppm of PEO

� We = τpoly

�
(�(tm)/ν); tm is the time corresponding to the

peak in � for c = 0

[Vaithianathan, et al., JCP, 187, 1 (2003).]



Direct Numerical Simulations



Direct Numerical Simulation(DNS)

Solve NS and FENE-P numerically

∂uα

∂t
+ (uγ∂γ)uα = −∂αp + ν∂γγuα + ∂γTαγ ,

∂γuγ = 0,

∂Cαβ

∂t
+ (uγ∂γ)Cαβ = (∂γuα)Cγβ + Cαγ(∂γuβ)− 1

µ
Tαβ .



Decaying Turbulence



Results: Initial Condition

� Start from an initial energy spectrum with energy
concentrated in the first few Fourier modes and the polymers
unstretched

� Monitor the decay of the energy dissipation rate and the
energy spectrum for the fluid with and without polymer
additives.



Energy Dissipation Rate

N = 256, ν = 10−3, τpoly = 1

� The energy dissipation rate �(t) as a function of time t for
different values of c .

� The peak in �(t) decreases as c increases.



Dissipation Reduction(DR)

N = 96, ν = 10−2

� Natural definition of dissipation-reduction

%DR =
�

�f ,m−�p,m

�f ,m

�
× 100;

� f and p stand, respectively, for the fluid without and with
polymers.

� An increase in c enhances the dissipation reduction DR (cf.,
earlier shell-model study).

� DR decreases marginally with an increase in We.



Fluid energy spectrum

N = 192, ν = 10−2, τpoly = 1

� Ef (k) =
�

k−1/2<k �<k+1/2 |u(k �)|2 at tm for polymer
concentrations c = 0(o-), c = 0.1(–) and c = 0.4(-).

� Energy spectrum at cascade completion changes significantly
for large Fourier modes.

� This had not been resolved by earlier, high-Re simulations!



Scale-dependent viscosity

N = 192, ν = 10−2, τpoly = 1

� The change in the spectra and � can be understood in terms
of an additional, effective, scale-dependent viscosity ∆ν(k) ≡
−µ

�
k−1/2<k �≤k+1/2 uk� · (∇ · J )−k�/[τpolyk

�2
E

p,m(k �)].

� Since ∆ν becomes negative, polymers pump energy into the
fluid around k � 10.



Structure Functions

Order-p equal-time, longitudinal velocity structure function.

Sp(r) ≡ �δu(r , t)p�,
δu||(r , t) ≡ [�u(�x +�r , t)− �u(�x , t)] · (�r/r).



Second order structure function S2(r)

Experiments(Ouellette et al.) Our DNS

Figure: c = 5ppm, Reλ = 290,
and We = 3.5

Figure: N = 128, ν = 0.01, and
τP = 1.5



PDF of |ω|

� Probability distribution of the modulus of the vorticity(P(|ω|))
at cascade completion(c=0, c=0.4).

� Addition of polymers leads to a decrease in the regions of
large vorticity.



Isosurfaces of |ω|

N = 256, ν = 10−3, τpoly = 1

� Iso-|ω| surfaces for |ω| = �|ω|�+ 2σ for c = 0(left) and
c = 0.4(right) at tm.

� Small-scale structures are suppressed on the addition of
polymers.



Stretching of Polymers:Cumulative distribution(CDF)

N = 256, ν = 10−3, τpoly = 1

� c = 0.1(dashed line), c = 0.4(line).

� An increase in c leads to a decrease in the polymer extension.

� A decrease in ν leads to turbulent flows and large polymer
extensions.



Summary of Results: Decaying turbulence

� Polymer additives lead to a decrease in small-scale structures.

� Polymers decrease the energy of the turbulent fluid at
intermediate length scales and increase it at small scales.

� Dissipation reduction is the analogue in homogeneous,
isotropic turbulence of drag-reduction in wall-bounded
turbulence.

� An effective scale-dependent viscosity leads to a natural
explanation of our results.

� This points toward an increase in the effective viscosity, but
one that is scale-dependent.

� Ref: Manifestations of Drag Reduction by polymer additives in
Decaying, Homogeneous, Isotropic Turbulence, P. Perlekar, D.
Mitra, and R. Pandit, Phys. Rev. Lett., 97, 264501 (2006).



Forced Turbulence
� Deterministic forcing of M.A. Taylor, S. Kurien, and G. Eyink,

Phys. Rev. E, 68, 26310, (2003).



Time evolution of E and �

N = 256, Reλ � 80, c = 0.1

� Time averaged E decreases with an increase in We

� Time averaged � decreases with an increase in We

� We = 3.5 (blue circles), We = 7.1 (black dashed line), NS
(red)



PDF of |ω| and �loc

N = 256, Reλ � 80, c = 0.1

� ω ≡ |
��

i ,j ωijωij |, �loc = νs
2 ≡

�
i ,j sijsij ,

s = (∇u + (∇u)T )/2, ω = ∇× u

� Regions of large strain and vorticity decrease on the addition
of polymers



PDF of |ω| and �loc

N = 256, Reλ � 80, c = 0.1

� ω ≡ |
��

i ,j ωijωij |, �loc = νs
2 ≡

�
i ,j sijsij ,

s = (∇u + (∇u)T )/2, ω = ∇× u

� Regions of large strain and vorticity decrease on the addition
of polymers



Isosurfaces of |ω|
N = 256, Reλ � 80, c = 0.1

� Iso-|ω| surfaces for |ω| = �|ω|�+ 2σ for c = 0(left) and
c = 0.1,We = 7.1(right).

� Small-scale structures are suppressed on the addition of
polymers.



QR plots

N = 256, Reλ � 23, We = 7.1, c = 0.1

� Left: NS; Right: Polymer (c = 0.1, We = 7.1)



Energy spectrum

(Left) N = 256, Reλ = 80
(Right) N = 512, Reλ = 20



Polymer extensions

N = 256, Reλ � 23, c = 0.1

� We = 7.1, c = 0.1(line); We = 3.5, c = 0.1(dashed line);

� Polymer extensions larger in comparison to decaying
turbulence

� At fixed c , polymer extension increases with an increase in We



Conclusions

� Our simulations show that the addition of polymers to flows
that display homogeneous isotropic turbulence leads to
dissipation reduction in both decaying and statistically steady
turbulence; this dissipation reduction is the analogue of drag
reduction in wall-bounded flows.

� Our numerical results agree with the experimental results of
(a) Liberzon, et al., op. cit. and (b) Ouellette et al., op. cit.

� Polymers decrease the energy of the turbulent fluid at
intermediate length scales and increase it at small scales; a
scale-dependent viscosity provides a natural means of
understanding our results.


