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Discrete Cyclic Convolution

e The FF'T provides an efficient tool for computing the discrete
cyclic convolution
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where the vectors F' and G have period N.
e Define the Nth primitive root of unity:

(N = exp (%) -

e The fast Fourier transform method exploits the properties that
Gy = Gy and C% = 1.



e The unnormalized backwards discrete Fourier transform of
{Fk:k:O,...,N} 1S
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e The corresponding forward transform is
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e The orthogonality of this transform pair follows from
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e The pseudospectral method requires a linear convolution.



e One can dealias by zero padding input data vectors of length m
to length N > 2m — 1:
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e [iaplicit zero padding prevents mode m — 1 from beating with
itself, wrapping around to contaminate mode N = 0 mod V.

e Since FE'T sizes with small prime factors in practice yield

the most eflicient implementations, the padding is normally
extended to N = 2m.




Pruned FFT's

e Although explicit padding seems like an obvious waste of
memory and computation, the conventional wisdom on avoiding
this waste is well summed up by Steven G. Johnson, coauthor
of the FFTW (“Fastest Fourier Transform in the West”) library
[Frigo & Johnson |:

The most common case where people seem to want
a pruned FFT 1s for zero-padded convolutions, where
roughly 50% of your inputs are zero (to get a linear
convolution from an FFT-based cyclic convolution).
Here, a pruned FF'T 1s hardly worth thinking about, at
least in one dimension. In higher dimensions, matters
change (e.qg. for a 3d zero-padded array about 1/8 of
your inpuls are non-zero, and one can fairly easily
save a factor of two or so simply by skipping 1d sub-
transforms that are zero).



[mplicit Padding [Bowman & Roberts 2011]

eLet N =2m. For y =0,...,2m — 1 we want to compute
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olf F;. = 0 for & > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:
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e This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2mlog,m =
N logy m.



e Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:
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e No bit reversal is required at the highest level.

e An implicitly padded convolution is implemented as in our
FFTW++ library (version 1.09) as cconv(f,g,u,v) computes an
in-place implicitly dealiased convolution of two complex vectors
f and g using two temporary vectors u and v, each of length m.



e This in-place convolution requires six out-of-place transforms,
thereby avoiding bit reversal at all levels.

e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding.
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Input: vector f, vector g

Output: vector f

u <+ fft1(f);

v« fft 1(g);

U< U*V;

for k=0tom—1do
flk] < Goflk];
glk] < 5,.8[K];

end

v« £t 1(f);

f+ fft 1(g);

V< vk f;

f < f£ft(u);

u< fft(v);

for k=0tom—1do

K]« £k] + Gopulk];

end

return f/(2m);
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Implicit Padding in 1D
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Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.
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Implicit Padding in 2D

e Eixtra work memory need not be contiguous with the data.




Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.
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Implicit Padding in 2D
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Implicit Padding in 2D
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Implicit Padding in 2D
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Implicit Padding in 3D
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Hermitian Convolutions

e [Hermitian convolutions arise when the input vectors are
Fourier transforms of real data:

fN—k — ﬁ
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Centered Convolutions

e For a centered convolution, the Fourier origin (k = 0) is
centered in the domain:

e Here, one needs to pad to N > 3m — 2 to prevent mode m — 1
from beating with itself to contaminate the most negative (first)
mode, corresponding to wavenumber —m + 1. Since the ratio
of the number of physical to total modes, (2m — 1)/(3m — 2)
is asymptotic to 2/3 for large m, this padding scheme is often
referred to as the 2/3 padding rule.

e The Hermiticity condition then appears as

for =T
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Implicit Hermitian Centered Padding in 1D
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Implicit Hermitian Centered Padding in 2D
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2D Pseudospectral Application

e We need to compute:

%‘; - VW= —((2XVV W)V,

which appears in Fourier space as

awk Z pry pr:L‘
Wplg -

k=p-+q

e The right-hand side of this equation may be computed as

ImplicitHConvolution2(ik,w,ik,w, ik,w/k*, —ik.,w/k?).
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Conclusions

e Memory savings: in d dimensions implicit padding
asymptotically uses 1/2971 of the memory require by
conventional explicit padding.

e Computational savings due to increased data locality: about a
factor of two.

e Highly optimized versions of these routines have been
implemented as a software layer FFTW++ on top of the FFTW
library and released under the Lesser GNU Public License.

e With the advent of this FFTW++ library, writing a high-
performance dealiased pseudospectral code is now a relatively
straightforward exercise.
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