Spectral Reduction: A Statistical Description of Turbulence

John C. Bowman,
Department of Mathematical and Statistical Sciences, University of Alberta,
Edmonton, Alberta, Canada

B. A. Shadwick,
Department of Physics, University of California at Berkeley

P. J. Morrison
Department of Physics, University of Texas at Austin
http://www.math.ualberta.ca/~bowman/talks

2D Turbulence

2D Navier–Stokes vorticity equation:

$$\frac{\partial \omega_k}{\partial t} + \nu_k \omega_k = \int dp \int dq \frac{\epsilon_{kpq}}{q^2} \omega_p^* \omega_q^*, \quad \text{where } \nu_k \equiv \nu k^2$$

is antisymmetric under permutation of any two indices.

Energy E_0 and enstrophy Z_0 on the fine grid:

$$E_0 \equiv \frac{1}{2} \int dk \frac{\left| \omega_k \right|^2}{k^2}, \quad Z_0 \equiv \frac{1}{2} \int dk \left| \omega_k \right|^2$$

First consider $\nu_k = 0$. Conservation of E_0 and Z_0 follow from:

$$\frac{1}{k^2} \frac{\epsilon_{kpq}}{q^2} \quad \text{antisymmetric in } \ k \leftrightarrow q,$$

$$\frac{\epsilon_{kpq}}{q^2} \quad \text{antisymmetric in } \ k \leftrightarrow p.$$
Spectral Reduction

- Introduce a coarse-grained grid indexed by K.
- Define new variables
 \[
 \Omega_K = \langle \omega_k \rangle_K = \frac{1}{\Delta K} \int_{\Delta K} \omega_k \, dk,
 \]
 where ΔK is the area of bin K.
- Evolution of Ω_K:
 \[
 \frac{\partial \Omega_K}{\partial t} + \langle \nu_k \omega_k \rangle_K = \sum_{P,Q} \Delta_P \Delta_Q \left\langle \frac{\epsilon_{kpq}}{q^2} \Omega^*_p \Omega^*_q \right\rangle_{KPQ},
 \]
 where $\langle f \rangle_{KPQ} = \frac{1}{\Delta K \Delta_P \Delta_Q} \int_{\Delta K} \, dk \int_{\Delta P} \, dp \int_{\Delta Q} \, dq \, f$.
- Approximate ω_p and ω_q by bin-averaged values Ω_P and Ω_Q:
 \[
 \frac{\partial \Omega_K}{\partial t} + \langle \nu_k \rangle_K \Omega_K = \sum_{P,Q} \Delta_P \Delta_Q \left\langle \frac{\epsilon_{kpq}}{q^2} \right\rangle_{KPQ} \Omega^*_P \Omega^*_Q.
 \]
Wavenumber Bin Geometry (3 x 8 bins)
On the coarse grid, define the energy E and enstrophy Z

$$E = \frac{1}{2} \sum_K \frac{|\Omega_K|^2}{K^2} \Delta_K, \quad Z = \frac{1}{2} \sum_K |\Omega_K|^2 \Delta_K.$$

Enstrophy is still conserved since

$$\left\langle \frac{\epsilon_{kpq}}{q^2} \right\rangle_{KPQ} \text{ antisymmetric in } K \leftrightarrow P.$$

But energy conservation has been lost!

$$\frac{1}{K^2} \left\langle \frac{\epsilon_{kpq}}{q^2} \right\rangle_{KPQ} \text{ NOT antisymmetric in } K \leftrightarrow Q.$$

Reinstate both desired symmetries with the modified coefficient

$$\frac{\left\langle \epsilon_{kpq} \right\rangle_{KPQ}}{Q^2}.$$

Energy and enstrophy are now simultaneously conserved.
Properties

- We call the forced-dissipative version of this approximation *Spectral Reduction (SR):*

\[
\frac{\partial \Omega_K}{\partial t} + \langle \nu_k \rangle_K \Omega_K = \sum_{P,Q} \Delta P \Delta Q \frac{\langle \epsilon_{kpq} \rangle_{KPQ}}{Q^2} \Omega_P^* \Omega_Q^*.
\]

- SR conserves both energy and enstrophy and reduces to the exact dynamics in the limit of small bin size.

- It has the same general structure and symmetries as the original equation and in this sense may be considered a *renormalization.*

- SR obeys a Liouville Theorem; in the inviscid limit, it yields statistical-mechanical (equipartition) solutions.
Moments

Q. How accurate is Spectral Reduction?

A. For large bins, the *instantaneous* dynamics of SR is inaccurate.

However: the equations for the *time-averaged* (or ensemble-averaged) moments predicted by SR closely approximate those of the exact bin-averaged statistics. *Eg.*, time average the exact bin-averaged enstrophy equation:

\[
\frac{\partial}{\partial t} \left\langle |\omega_k|^2 \right\rangle_K + 2 \text{Re} \left\langle \nu_k |\omega_k|^2 \right\rangle_K = 2 \text{Re} \sum_{P,Q} \Delta P \Delta Q \left\langle \frac{\epsilon_{kpq}}{q^2} \omega_k^* \omega_p^* \omega_q^* \right\rangle_{K PQ},
\]

where the bar means time average and \(\langle \cdot \rangle_K \) means bin average.

Time-averaged quantities such as \(|\omega_k|^2 \) and \(\omega_k^* \omega_p^* \omega_q^* \) are generally *smooth* functions of \(k, p, q \) on the four-dimensional surface defined by the triad condition \(k + p + q = 0 \).
Mean Value Theorem for integrals: for some $\xi \in K$,

$$|\Omega_K|^2 = |\omega_\xi|^2 \approx |\omega_k|^2 \quad \forall k \in K.$$

To good accuracy these statistical moments may therefore be evaluated at the characteristic wavenumbers K, P, Q:

$$\frac{\partial}{\partial t} |\Omega_K|^2 + 2 \text{Re} \langle \nu_k \rangle_K |\Omega_K|^2 = 2 \text{Re} \sum_{P,Q} \Delta P \Delta Q \left\langle \frac{\epsilon_{kpq}}{q^2} \right\rangle_{K P Q} \Omega_K^* \Omega_P^* \Omega_Q^*.$$

To the extent that the wavenumber magnitude q varies slowly over a bin:

$$\frac{\partial}{\partial t} |\Omega_K|^2 + 2 \text{Re} \langle \nu_k \rangle_K |\Omega_K|^2 = 2 \text{Re} \sum_{P,Q} \Delta P \Delta Q \left\langle \frac{\epsilon_{kpq}}{Q^2} \right\rangle_{K P Q} \Omega_K^* \Omega_P^* \Omega_Q^*.$$

But this is precisely the time-average of the SR equation!
Convergence

- The previous argument suggests that Spectral Reduction can indeed provide an accurate statistical description of turbulence, even when each bin contains many statistically independent modes.

- As the wavenumber partition is refined, one expects the solutions of the time-averaged SR equations to converge to the exact statistical solution.

- An object-oriented C++ program (Triad) has been developed to implement and test Spectral Reduction.
Convergence of Partition

\[E(k) \]

- 16\times8 \text{ bins}
- 32\times8 \text{ bins}
- 64\times8 \text{ bins}
- 16\times16 \text{ bins}
- 683\times683 \text{ modes}
- RTFM

\[k \]

\[E(k) \] vs. \[k \] for different bin configurations and modes.
Noncanonical Hamiltonian Formulation

- Underlying noncanonical Hamiltonian formulation for inviscid 2D vorticity equation:

\[
\omega_k = \int dq \ J_{kq} \frac{\delta H}{\delta \omega_q},
\]

where

\[
H = \frac{1}{2} \int dk \ \frac{\left| \omega_k \right|^2}{k^2},
\]

\[
J_{kq} = \int dp \ \epsilon_{kpq} \omega_p^*.
\]

- Leads to inviscid Navier–Stokes equation:

\[
\frac{\partial \omega_k}{\partial t} + \nu_k \omega_k = \int dp \ \int dq \ \frac{\epsilon_{kpq}}{q^2} \omega_p^* \omega_q^*.
\]
Liouville Theorem

- **Navier–Stokes:**
 \[J_{kq} = \int d\mathbf{p} \epsilon_{kpq} \omega_p^* \]
 \[\Rightarrow \int dk \frac{\delta \omega_k}{\delta \omega_k} = \int dk \int dq \left(\frac{\delta J_{kq}}{\delta \omega_k} \frac{\delta H}{\delta \omega_q} + J_{kq} \frac{\delta^2 H}{\delta \omega_k \delta \omega_q} \right) = 0. \]
 \[\epsilon_k(-k)q = 0 \]

- **Spectral Reduction:**
 \[J_{KQ} = \sum_P \Delta_P \langle \epsilon_{kpq} \rangle_{KPQ} \Omega_P^* \]
 \[\Rightarrow \sum_K \frac{\partial \dot{\Omega}_K}{\partial \Omega_K} = \sum_{K,Q} \left(\frac{\partial J_{KQ}}{\partial \Omega_K} \frac{\partial H}{\partial \Omega_Q} + J_{KQ} \frac{\partial^2 H}{\partial \Omega_K \partial \Omega_Q} \right) = 0. \]
 \[\langle \epsilon_{kpq} \rangle_{K(-K)Q} = 0 \]
Statistical Equipartition

- If the dynamics are mixing, the Liouville Theorem and the coarse-grained invariants

\[E = \frac{1}{2} \sum_K \left(\frac{\Omega_K}{K^2} \right)^2 \Delta_K, \quad Z = \frac{1}{2} \sum_K |\Omega_K|^2 \Delta_K, \]

lead to statistical equipartition of \((\alpha/K^2 + \beta) |\Omega_K|^2 \Delta_K\).

- This is the correct equipartition only for uniform bins. However, for nonuniform bins, a rescaling of time by \(\Delta_K\):

\[
\frac{1}{\Delta_K} \frac{\partial \Omega_K}{\partial t} + \langle \nu_k \rangle_K \Omega_K = \sum_{P,Q} \Delta_P \Delta_Q \frac{\langle \epsilon_{kpq} \rangle_{KPQ}}{Q^2} \Omega_P^* \Omega_Q^*.
\]

yields the correct inviscid equipartition:

\[
\langle |\Omega_k|^2 \rangle = \frac{1}{\alpha/K^2 + \beta}.
\]
Relaxation to equipartition

\[E(k) \]

- **16x8 bins**
- **21x21 modes**
- **\(\pi k / (\alpha + \beta k^2) \)**

Relation to equipartition:

\[k \]

Graph showing the relaxation to equipartition with different bin and mode counts.
Stiffness Problem

- The rescaling of time does not change the steady-state moment equations.
- It does affect the statistical trajectory of the system and the resulting statistical solution.
- However, the resulting system becomes numerically very stiff.
- **Unsolved Problem:** given an efficient numerical method for evolving the system of equations

\[
\frac{dy}{dt} = S(y),
\]

find an efficient numerical method to evolve

\[
\frac{dy}{dt} = \Lambda S(y),
\]

where \(\Lambda \) is a constant real diagonal matrix.
The logarithmic slope of $E(k)$ is shown in the graph. The y-axis represents the logarithmic slope of $E(k)$, and the x-axis represents the wavenumber k. The graph includes multiple curves labeled as:

- Red curve: cascade/sr
- Blue curve: dns/cascade/ps
- Green curve: dns/cascade/ps3

The horizontal dotted lines indicate the range of logarithmic slopes from -1 to -3. The graph is divided into two main sections, highlighting the differences in the behavior of $E(k)$ across different wavenumber ranges.
The logarithmic slope of $E(k)$ is shown in the graph. The red line represents the cascade/inv process, while the blue line represents the dns/cascade/inv process. The graph displays the relationship between the logarithmic slope of $E(k)$ and the wave number k. The y-axis represents the logarithmic slope of $E(k)$, and the x-axis represents k. The graph includes horizontal lines at $\log_{10}(E(k)) = -2$ and $\log_{10}(E(k)) = -3$ for reference.