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Flow visualization of turbulent 
thermal convection in water

For turbulent Rayleigh-Bénard
 

convection, we have
• three local variables, v(r,t), T(r,t) and p(r,t), and three equations:

1. Dissipations in Rayleigh-Bénard Convection
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• two corresponding dissipation 
rates, u

 

and T

 

.




•
 

Understanding heat transport, Nu(Ra,Pr), in turbulent convection 
through spatial decomposition of the dissipation fields u

 

and T

There are two exact relations:
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Phenomenology of Grossmann & Lohse
 

(JFM, 2000; PoF, 2004):
boundary versus bulk



•
 

Understanding small-scale properties of turbulent convection 
through the statistics of dissipation fluctuations u

 

and T

Kolmogorov
 

refined similarity hypothesis (JFM, 1962)
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Scale-dependent fluctuations of u

 

(r,t) and T

 

(r,t)
 

will give rise 
to anomalous scaling for the velocity and temperature structure 
functions.  

X.-Z. He, P. Tong & K-Q. Xia, Phys. Rev. Lett. 98, 144501 (2007). 
X.-Z. He & P. Tong, Phys. Rev. E 79, 026306 (2009). 
X.-Z. He, P. Tong & E. Ching, J. Turbulence, 11, No. 35, 1 (2010).
X.-Z. He, E. Ching, & P. Tong, Phys. Fluids 23, 025106 (2011). 



2. Measurement of the local thermal dissipation rate
Instantaneous local viscous dissipation rate:
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Instantaneous local thermal dissipation rate:
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Total convective heat flux across the cell:
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Time-averaged local thermal dissipation rate:



Local temperature gradient probe:

First probe: d = 0.17 mm 
dxi

 

= 0.8 mm, dTmin

 

º

 
5 mK

Second probe: d = 0.11 mm
dxi

 

= 0.25 mm, dTmin

 

º

 
5 mK

d º 0.8 mm at Ra = 3.6ä
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four ac bridges with lock-in amplifiers 
operated at f º
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(i)
 

In the bulk region, ef is 
dominant and em is negligibly 
small.

3. Experimental results
A. Spatial distribution of the thermal dissipation field
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(ii) ef

 

increases rapidly in the          
region and is ~140 

times larger than that at the cell 
center. 
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Ra = 3.9ä109
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(iii) In the thermal boundary layer, em becomes dominant    
and ef is smaller.



(iv) ef has three terms, ef = ex

 

+ ey

 

+ ez

 

, and the dominant term
is

 
ez

 

, which is twice larger than ex

 

and ey

 

.
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(v) ef ~ Ra-a

 

with a
 

= 0.33 ±
 

0.03
 

both at the cell center 
and near the sidewall.
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B. Ra-dependence of the local thermal dissipation rate



(vi) em ~ Ra+b

 

with b
 

= 0.63 ±
 

0.05 inside the thermal boundary 
layer.
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Inside the thermal boundary layer (almost touching the lower 
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symmetric

asymmetric

asymmetric

Near the sidewall at Ra = 3.6109
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C. Scale-dependent statistics of dissipation fluctuations ef (r,t)



Histogram of the three temperature gradient components

At the cell center Near the sidewall

Ra = 4μ109

Approximately isotropic Anisotropic fluctuations

Ra = 8.3¥109



Challenges in identifying anomalous scaling in turbulent convection

• Convective flow in a closed cell is neither homogeneous nor isotropic
-

 
three representative locations in the cell: 

at the center, near the sidewall and near the lower conducting plate

-
 

decomposition of the local dissipation rate into contributions
from three different temperature gradient components.

• Bolgiano
 

length and separation of passive and active scalars within a  
limited range of length scales

• Connection of time-domain results to the theory in spatial domain
Taylor’s frozen-flow hypothesis does not hold in turbulent convection 

Lohse

 

& Xia, Annu. Rev. Fluid Mech. (2010)
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Assuming has a hierarchical structure of the She–Leveque form, 
one finds

 
[Ching

 

& Kwok, PRE 62, 7587(R) (2000)]
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c = 3 -
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is co-dimension of the most dissipative structures, 
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(for velocity scaling) and 
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Scaling of  at the cell center:( )z p
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Ra = 8.3 μ
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LSC turnover time t0
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35 s; local Bolgiano
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Extended self-similarity (ESS) plots

Convergence and accuracy of the measured 
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Central: c = 1 (sheet-like), b
 

= 1/3 and l
 

= 2/3 (passive)

Scaling exponent mz(p) at the cell center:

Ra = 8.3 μ
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ESS plot



In the central region, mx(p) and my(p) are the same as mz(p): 
c = 1 (sheet-like), b

 
= 1/3 and l

 
= 2/3 (passive)

Scaling of  and              at the cell center:( )x p
  ( )y p
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x and y components: c = 1 (sheet-like), b
 

= 1/3 and l
 

= 2/3 (passive)

z-component: c =
 

2 (filament-like), b
 

= 2/3 and l
 

= 2/3 (passive)

Scaling of  near the sidewall:( )i p
 
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Temperature fluctuations near the lower conducting plate are
governed by the thermal boundary layer thickness, d, which 
decreases with increasing Ra. Measurements were made in the 
peak region (0.5 §

 
z/d § 0.9).

Ra = 1.75 μ
 

109

Ra = 1.75μ
 

109

Temperature profile and histogram of the temperature gradient 
components near the thermal boundary layer 



Inside the thermal boundary layer (all components):
c = 1 (sheet-like), b

 
= 3/5 and l

 
= 2/5 (active)

Ra = 8.3 μ
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3.5 s.



Sidewall: c = 2.4 (sheet-like),  b
 

= 0.72 and l
 

= 2/3 (passive)

Scaling exponent m(p) of the total dissipation: 

(p) = c(1- )- pp  

cell center

boundary layer

Ra = 8.3 μ
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along the central axis
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D. Relation between temporal and spatial fluctuations 
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(i) Temporal velocity correlation function:

or frequency power spectrum:
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Single-point time series measurements (LDV, hot wire, …):

(ii) Temporal velocity structure functions:
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Two-point time series measurements (PIV or two local probes):

Velocity space-time cross-correlation function:
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Taylor’s frozen flow hypothesis:
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Elliptic model of He and Zhang (Phys. Rev. E, 2006)
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Temperature space-time cross-correlation function:

Two-point temperature measurements over varying distance r

Temperature is a passive scalar in the bulk region, and thus
CT (r,) is expected to have the same scaling form as Cu (r,) does.

Near the sidewall At the cell center 



3-D plot of the measured  ,rCT
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2-D plot of iso-correlation contours

He, He and Tong,  Phys. Rev. E, 81, 065303(R), 2010.

Experiment confirms the elliptic model:

Experimental results near the sidewall
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Taylor’s hypothesis does not hold
   , , 0EC r C r     , ,0TC r C r 

Ra = 2μ1010
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3-D plot of the measured  ,rCT 2-D plot of iso-correlation contours
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He and Tong, Phys. Rev. E, 83, 037302 (2011).

Experiment confirms the elliptic model:
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Experimental results at the cell center



Scaling behavior of CT

 

(r,) in the central region of the cell
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velocity: 
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Kraichnan’s
 

random sweeping hypothesis is valid in the inner region.

Ra = 2μ1010



Comparison between CT

 

(rE

 

,) and CT

 

(r,) in the bulk region
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Show that

• At the cell center, we have rE = Vt
 

(r = 0) and the average over dt
 (or

 
dt) is equivalent to the average over drE (average over a sphere of 

radius rE = Vt).

Connection of time-domain results to the theory in spatial domain
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• Near the sidewall, we have rE = (U2+V2)1/2

 

t

 
(r = 0) and the average 

over dt
 

(or
 

dt) is equivalent to the average over drE (average over a 
ellipsoid of major axis rE = (U2+V2)1/2

 

t

 
and minor axis rE =  Vt).



4. Summary
•

 
Measured thermal dissipation field has the form eT

 

(r) = em (r) + ef (r), 
with em (r) concentrating in the thermal boundary layers and ef (r)

 occupying mainly in the plume-dominated bulk region.

•
 

Measured ef (r) ~ Ra-0.33

 

in the bulk region and em (r) ~ Ra+0.63

 

inside 
the thermal boundary layer.

•
 

Measured moments have the power-law form with 
for all three temperature gradient components 

and for all values of p up to 6 and are observed at three representative 
locations in the cell. 

•
 

Scaling of contains two contributions: (i) the horizontal 
exponents mi(p) (i = x,y) have the same parameters in the bulk region: 
c = 1 (sheet-like) and l

 
= 2/3 (passive scalar) but become c = 1 (sheet-

 like) and l
 

= 2/5 (active scalar) in the thermal boundary layer. 
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ii p p
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( )i p
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•
 

(ii) Superimposed on this background is the vertical exponent mz(p), 
which varies with the position. At the cell center and inside the thermal 
boundary layer, mz(p) remains the same as the two horizontal 
exponents, whereas near the sidewall, mz(p) becomes different from     
m

 

i(p) (i = x,y) with the parameters c = 2 (filament-like) and l
 

= 2/3 
(passive scalar). 

•
 

Measured temperature space-time cross-correlation function CT (r,) 
near the sidewall and at the cell center both has the scaling form 
CT (rE ,0), as predicted by the elliptic model.

•
 

The new scaling relation, rE
2

 

= (r-Ut)2

 

+V 2t2, can be applied to a 
large class of turbulent flows, such as turbulent wind tunnels, in 
which there are two characteristic velocities associated with the mean 
and rms

 
velocities.      
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