Turbulence on Petascale Computers:

What have we learned, and What we hope to learn

P.K. Yeung

Schools of AE, CSE and ME Georgia Inst of Tech, USA pk.yeung@ae.gatech.edu

KITP Turbulence Program, UC Santa Barbara May 26, 2011

Ack.: NSF and NSF/DoE Supercomputing Centers

Outline of This Talk

- Turbulence and Petascale Computers:
 - some general remarks
- What have we learned (examples):
 - intermittency, mixing, dispersion
- What we hope to learn (challenges):
 - in both science and computing

Turbulence and Computing

- Turbulence: disorderly fluctuations over a wide range of scales in time and 3D space, with diverse applications
 - efficient mixing (of heat, substances and momentum) is key to combustion, aerodynamic drag, pollutant dispersion, etc.
- Direct numerical simulation: compute all the scales, based on exact governing equations
 - for physical understanding and model development
 - CPU intensive (repeat: wide range of scales)
- ightharpoonup Petascale: 10^{15} operations/sec, or bytes of data:
 - exponential increase in CPU power over at least 25 years, world's fastest currently at 2.4 Pflop/s (theoretical peak)

A brief history of DNS

- (selected major markers) —
- Orszag 1969-1971: Spectral and pseudo-spectral methods
- Riley & Patterson 1972: particle tracking (32^3)
- (Large-eddy simulation: Leonard, 1974)
- \blacksquare Rogallo 1981: homogeneous turbulence (128³)
- ▶ Kim, Moin & Moser 1987: channel flow (Chebyshev)
- Various authors: $\sim 512^3$, early to late 1990s
- ▶ Kaneda *et al.* 2002: 4096³ on Earth Simulator, Japan

A brief history of DNS

- (selected major markers) —
- Orszag 1969-1971: Spectral and pseudo-spectral methods
- Riley & Patterson 1972: particle tracking (32^3)
- (Large-eddy simulation: Leonard, 1974)
- Rogallo 1981: homogeneous turbulence (128^3)
- ▶ Kim, Moin & Moser 1987: channel flow (Chebyshev)
- Various authors: $\sim 512^3$, early to late 1990s
- ▶ Kaneda *et al.* 2002: 4096³ on Earth Simulator, Japan

Future: Turbulence at 12288³, RK4, 10000 time steps in 40 hours is an acceptance test criterion for 10-Pflop *Blue Waters*, 2012

Uses of Massive Computing Power

- A wider range of scales (in space and/or time)
 - higher Reynolds number (always!)
 - high Schmidt number ($Sc = \nu/D$): smaller scales
 - very low Schmidt number: growh of large scales
- Improved accuracy at the small scales
 - fine-scale intermittency, thin reaction zones
- Longer simulations, e.g. to provide better sampling
 - amount of data IS a challenge
- More complex physics
 - e.g. stratification, rotation, MHD
- More complex boundary conditions
 - channel, boundary layer, mixing layer (still canonical)

More thoughts about Computers

- Good access to a top-of-the-line machine would let us:
 - compute faster, bigger, longer; analyze deeper
 - compute better too? (hopefully)
- But to get the best benefit is not trivial
 - massive parallelism (up to $O(10^5)$ CPU cores)
 - Cyber: how to use/re-use, maintain, and share data
 - intense competition for CPU resources vs. other fields
 - new programming models to be investigated
- Good science gets done only if:
 - good questions are being asked (needs collaborators)
 - humans and computers working together well

Simulation Approach

- Forced, stationary isotropic turbulence on a periodic domain, using Fourier pseudo-spectral method (Rogallo 1981)
- Resolution: in most simulations pushing the Reynolds number $k_{max}\eta \approx 1.5 \ (\Delta x/\eta \approx 2, \text{ with } k_{max} \equiv \sqrt{2}N/3)$
 - effects on intermittency examined in Donzis et al. PoF 2008
- Passive scalar fluctuations driven by a uniform mean gradient: $(\nabla \Phi = (1, 0, 0))$: allows tests of local isotropy)

$$\partial \phi / \partial t + \mathbf{u} \cdot \nabla \phi = -\mathbf{u} \cdot \nabla \Phi + D_{\phi} \nabla^2 \phi$$

- ullet Size of smallest scale for each scalar depends on Sc unequal accuracy for multiple scalars in a given simulation
- Massively parallel code, in principle up to N^2 processors (Donzis, Yeung & Pekurovsky; TeraGrid Conf. 2008)

Simulation database

R_{λ}	N	$k_{max}\eta$	Sc					
140	256	1.38	0.125	1				
140	512	2.74	0.125	1	4			
140	1024	5.48		1	4			
140	2048	11.2			4			64
240	512	1.41	0.125	1				
240	2048	5.14		1		8		
240	4096	~ 11					32	
390	1024	1.4	0.125	1				
650	2048	1.4	0.125	1				
650	4096	2.8		1	4			
1000	4096	1.4						

(Also recent runs on larger domains, and very low Sc)

What have we learned:

1. Intermittency and extreme events

Dissipation and Enstrophy

- Dissipation: $\epsilon = 2\nu s_{ij} s_{ij}$ (strain rates squared)
- Enstrophy: $\Omega = (\nu)\omega_i\omega_i$ (rotation rates squared)
- Same mean values in homogeneous turbulence, but moments and PDFs can be different
- Both represent small scales, but most data sources suggest enstrophy is more intermittent, contrary to expectation at high Reynolds no. (Nelkin 1999)
- In relative dispersion, straining pulls particle pairs apart but rotation makes them move around together
- Difficulties in resolution and sampling, nature of infrequent but extreme events

PDFs of Dissipation and Enstrophy

Stretched-exponential fits:

$$f_{\epsilon}(\epsilon') \sim \exp[-b_{\epsilon}(\epsilon')^{c_{\epsilon}}]$$

- Donzis et al. PoF 2008:
 - PDFs of $\epsilon/\langle \epsilon \rangle$ and $\Omega/\langle \Omega \rangle$ coincide at extreme tails (only at high Reynolds no.)
- Similar results observed in two 4096³ simulations:
 - higher Reynolds no.
 - higher resolution

Extreme ϵ usually accompanied by large Ω , but extreme Ω may occur with moderate ϵ

3D Visualization

[TACC visualization staff] 2048^3 , $R_{\lambda} \approx 650$: intense enstrophy (red) has worm-like structure, while dissipation (blue) is more diffuse

Flow variables conditioned on ϵ and Ω

From $\nabla^2(p/\rho) = \frac{1}{2}(\Omega - \epsilon/\nu)$, an indirect connection to pressure field?

At high $Re, \langle p|\epsilon, \Omega \rangle$ is almost symmetric across the diagonal line

- both high ϵ and high Ω lead to negative pressure fluctuations
- but nonlocal nature of pressure adds some complexity

What have we learned:

2. Turbulent Mixing (Passive Scalars)

Turbulent Mixing: Similarity theory

- ullet (Besides Re) the Schmidt number is also an important parameter
- ▶ Sc varies: O(0.01) in liquid metals, O(1) for gaseous combustion, ~ 7 for heat in water, O(1000) for salinity in oceans
- Smallest scales thought to be

Obukhov-Corrsin:
$$\eta_{OC} = \eta Sc^{-3/4}$$
 for $Sc \lesssim 1$
Batchelor: $\eta_B = \eta Sc^{-1/2}$ for $Sc \gg 1$

- Different scaling regimes for $Sc \leq 1$, $\gg 1$ and $\ll 1$, but data less available in latter two
- Local isotropy: do the small scales remain isotropic in response to a mean gradient?
- Intermittency of scalar gradients and scalar dissipation: what is the effect of the Schmidt number?

$\mathrm{Sc} \lesssim 1$: Obukhov-Corrsin scaling

Inertial-convective:

$$E_{\phi}(k) \sim \langle \chi \rangle \langle \epsilon \rangle^{-1/3} k^{-5/3}$$

(for
$$1/L \ll k \ll 1/\eta_{OC}$$
)

- Yeung et al. PoF 2005:
 - $C_{OC} \approx 0.67$ in 3D spectrum, consistent with survey of experiments (Sreenivasan PoF 1996)
 - bottleneck apparent for Sc = 1 (precursor to k^{-1} for Sc > 1?)

Compensated spectra

Consistent with isotropic random forcing of scalars (Watanabe & Gotoh 2004, 2007; ▲, •)

$Sc\gg 1$: Batchelor's spectrum

~ Donzis, Sreenivasan & Yeung (FTC 2010)

$$E_{\phi}(k) \sim C_{B} \langle \chi \rangle \tau_{\eta} k^{-1}$$

Value of C_B is less certain

Viscous-convective:

$$1/\eta \ll k \ll 1/\eta_B$$

- $Arr R_{\lambda}$ 240, Sc = 1/8, 1, 8, 32
- Sustained trend towards k^{-1}

- Batchelor (1959): 2.0, but DNS close to 5
- PDF of most compressive principal strain rate

$\mathrm{Sc} \ll 1$: Batchelor et al. JFM 1959

"Inertial-diffusive":
$$E_{\phi}(k) \sim \langle \chi \rangle \langle \epsilon \rangle^{2/3} D^{-3} k^{-17/3}$$

- Few data available: $Sc \ll 1$ in liquid metals and astrophysics
- Needs larger domain for larger length scales
 while keeping Re high!
- Spectral cascade not the same, since velocity is now at "intermediate" scale
- Preliminary data: Sc = 1/8, 1/32, 1/128, 1/512

Tentative support for $k^{-17/3}$ (quality of data to be improved)

Local (An)isotropy

- Most lab. and DNS data indicate $\nabla_{||}\phi$ is skewed, in conflict with notion of local isotropy at high Re
- Beyond $Sc \sim 4$, skewness drops with increasing Sc (faster if Re is higher)
- A return to isotropy at high Re may have been masked by finite resolution
 (Donzis & Yeung FTC 2010)

Gradient skewness at various R_{λ} , Sc, and resolutions:

Intermittency of scalar gradients

- Scalar gradients are highly non-Gaussian, with $\nabla_{\parallel}\phi$ about 10% higher flatness than $\nabla_{\perp}\phi$
- Strong increase with R_{λ} at low Sc
- lacksquare High Sc: a trend of saturation (but flatness for highest Sc in simulation may be underestimated)
- Sc needed for saturation is lower if Re is high

Flatness of $\nabla_{\parallel}\phi$

What have we learned:

3. Turbulent Dispersion (Lagrangian view)

Lagrangian Approach and DNS

- Motion of fluid particles is fundamental to turbulent dispersion and multiphase flows
 - G.I. Taylor 1921, Proc. Lond. Math. Soc.: "Diffusion by continuous movements"
 - L.F. Richardson 1926: particle pairs moving apart
 - multiparticle clusters also give useful info. on flow structure
- DNS is a powerful source of Lagrangian data
 - particle tracking algorithm based on cubic-spline interpolation (Yeung & Pope 1988): $d\mathbf{x}^+/dt = \mathbf{u}^+; \mathbf{u}^+(t) = \mathbf{u}(\mathbf{x}^+(t), t)$
 - velocity gradients sampled along particle trajectories
 - enormous detail under controlled conditions, for modeling

Lagrangian Kolmogorov Similarity

Lagrangian structure function:

$$D_2^L(\tau) \equiv \langle [u^+(t+\tau) - u^+(t)]^2 \rangle$$

- Range of time scales from τ_{η} to integral time scale, $T_L \equiv \int_0^{\infty} \rho_L(\tau) \ d\tau$
- For $\tau_{\eta} \ll \tau \ll T_L$ ("inertial"):

$$D_2^L(\tau) = C_0 \epsilon \tau$$

 C_0 used in stochastic modeling

• R_{λ} up to ≈ 1000 in DNS (similar to expts) with $T_L/\tau_{\eta} \approx 80 \colon C_0 \to O(7)$

DNS database, 64^3 to 4096^3

[Model of Sawford (1991) predicts $D_2^L(\tau)$ well, but not higher orders]

Dispersion Modeling

Stochastic modeling with drift and randomness terms: need T_L/τ_η as function of Reynolds number; and value of C_0

Sawford: multiple data sources

DNS at 4096^3 , $R_{\lambda} \approx 1000$:

$$T_L/\tau_\eta \approx 80$$

Pope 2009: based on acceleration model by Sawford (PoF 1991)

Higher-order structure functions

Much more difficult. Resolution issues due to intermittency (small τ)

Local flow structure

Fluid particles moving in regions of large fluctuating velocity gradients will experience a rapid change in velocity, i.e., a large acceleration

- Local straining, rotation, or combination of effects
 - dissipation: $\epsilon \equiv 2\nu s_{ij} s_{ij}$
 - enstrophy: $\Omega \equiv \omega_i \omega_i$
 - pseudo-dissipation: $\varphi \equiv \nu (\partial u_i/\partial u_j)(\partial u_i/\partial u_j)$
- Strain-dominated vs rotation-dominated regions
 - strain is very important in dispersion of particle pairs
 - rotation can cause frequent changes in direction
- Need to know statistics and time scales of ϵ , ζ and φ , along fluid particle trajectories, as function of Reynolds no.

Lagrangian conditional statistics

• Conditional sampling based on ϵ , Ω , or φ along particle paths, e.g.:

$$\rho_u(\tau|Z) \equiv \frac{\langle u^+(t)u^+(t+\tau)|Z^+(t)=Z\rangle}{\langle \{u^+(t)\}^2|Z^+(t)=Z\rangle}$$

with $Z = \epsilon$, Ω or φ in logarithmic intervals

- Lagrangian time series of ϵ , Ω and φ can be obtained by high-order interpolation in DNS
- larger acceleration and more rapid-decorrelation expected in regions of large velocity gradients
- dependence expected to last for time lags comparable to integral time scales of $\epsilon^+(t)$, $\Omega^+(t)$, $\varphi^+(t)$
- A promising tool for introducing effects of fine-scale intermittency into stochastic modeling (Lamogese *et al.* JFM 2007)

Conditional structure functions

- Stochastic modeling at different levels of complexity:
 - Given $\mathbf{u}^+(t)$, "predict" increment $\Delta_{\tau}\mathbf{u}^+ = \mathbf{u}^+(t+\tau) \mathbf{u}^+(t)$ (then integrate to recover displacement)
 - Given $\mathbf{u}^+(t)$ and $\mathbf{a}^+(t)$, "predict" $\Delta_{\tau}\mathbf{a}^+ = \mathbf{a}^+(t+\tau) \mathbf{a}^+(t)$ (then integrate to recover velocity, then displacement)
 - Given $\mathbf{u}^+(t)$ and $\epsilon^+(t)$: incorporate fine-scale intermittency
- Dissipation (strain), enstrophy (vorticity), or pseudo-dissipation (all velocity gradients)
- Conditional flatness factor: (with $X = \epsilon$, Ω or φ)

$$\mu_4(\tau|X) = \langle (\Delta_\tau u^+)^4 | X \rangle / \langle (\Delta_\tau u^+)^2 | X \rangle^2$$

"Conditional Gaussianity" is closest approximation for acceleration given pseudo-dissipation (Yeung *et al.* PoF 2006)

Local slopes and extended self-similarity

Let
$$D_m^L(\tau) \propto \tau^{\zeta_m}$$

- K41 gives $\zeta_m = m/2$, but affected by intermittency
- ESS: Consider "local slope"

$$\zeta_4'(\tau) = \frac{d\log[D_4^L(\tau)]}{d\log[D_2^L(\tau)]}$$

- Biferale *et al.* PoF 2008: suggests "dip" in $\zeta_4'(\tau)$ for $\tau/\tau_\eta \approx 2$ due to vortices
- Can intense strain rate cause a similar observation?

Lines A-E: increasing ϵ , Ω or φ

Multiparticle clusters

- Motions of 2,3,4 particles considered together can be related to 2nd, 3rd and 4th moments of concentration fluctuations
 triangles and tetrads also carry info on shape distortion
- Richardson (1926) for mean-square separation:

$$\langle r^2 \rangle = g \langle \epsilon \rangle t$$

inertial range conditions and independent of initial separation

- Focus on tetrads (Pumir *et al.* 2000):
 - Size measured by volume or (better) gyration radius:

$$V = \frac{1}{6} \left| \left(\mathbf{X}^{(2)} - \mathbf{X}^{(1)} \right) \cdot \left[\left(\mathbf{X}^{(3)} - \mathbf{X}^{(1)} \right) \times \left(\mathbf{X}^{(4)} - \mathbf{X}^{(1)} \right) \right] \right|$$

$$R^{2} = \frac{1}{2n} \sum_{l,m=1}^{n} |\mathbf{X}^{(l)} - \mathbf{X}^{(m)}|^{2} \quad (n = 4)$$

• Shape: $0 \le \Lambda = V^{2/3}/R^2 \le 3^{-5/3}$, or ratios of eigenvalues of a moment-of-inertia tensor

Tetrads: Evolution of Size and Shape

Data from $R_{\lambda} \approx 1000$, 4096^3 and $R_{\lambda} \approx 650$, 2048^3 runs used to test

$$\langle R^2 \rangle / r_0^2 = (3g/2)(t/t_0)^3$$

(where
$$t_0 = (r_0^2/\langle \epsilon \rangle)^{1/3}$$
)

Shape shows more scaling:

- inertial and diffusive regimes:0.45 (DNS) and 0.645 (MC)
- more details in Hackl et al. PoF May 2011

What do we hope (and need) to learn: A. Unresolved issues in turbulence

B. Cyber challenges and opportunities

- Connections among pressure, dissipation, and enstrophy
 - knowledge of ϵ and Ω determines $\nabla^2 p$, but not p itself

- Connections among pressure, dissipation, and enstrophy
 - knowledge of ϵ and Ω determines $\nabla^2 p$, but not p itself
- ullet A unified view of Sc-dependence in turbulent mixing
 - spectral transfer, local isotropy, intermittency
 - low or high Sc, at reasonably high Re

- Connections among pressure, dissipation, and enstrophy
 - knowledge of ϵ and Ω determines $\nabla^2 p$, but not p itself
- ullet A unified view of Sc-dependence in turbulent mixing
 - spectral transfer, local isotropy, intermittency
 - low or high Sc, at reasonably high Re
- Lagrangian intermittency in turbulent dispersion
 - refined similarity, info. for stochastic modeling

- Connections among pressure, dissipation, and enstrophy
 - knowledge of ϵ and Ω determines $\nabla^2 p$, but not p itself
- ullet A unified view of Sc-dependence in turbulent mixing
 - spectral transfer, local isotropy, intermittency
 - low or high Sc, at reasonably high Re
- Lagrangian intermittency in turbulent dispersion
 - refined similarity, info. for stochastic modeling
- DNS: effects of resolution, domain size, simulation time span

- Connections among pressure, dissipation, and enstrophy
 - knowledge of ϵ and Ω determines $\nabla^2 p$, but not p itself
- ullet A unified view of Sc-dependence in turbulent mixing
 - spectral transfer, local isotropy, intermittency
 - low or high Sc, at reasonably high Re
- Lagrangian intermittency in turbulent dispersion
 - refined similarity, info. for stochastic modeling
- DNS: effects of resolution, domain size, simulation time span
- Effects of more complex physics on everything above:
 - stratification, rotation, MHD turbulence

How to keep going, and to the next level: (*Exascale* by 2018):

▶ How to scale our codes, efficiently, to $O(10^5)$ CPU cores? (currently, largest system in the world has $\approx 220,000$ cores)

How to keep going, and to the next level: (Exascale by 2018):

- ▶ How to scale our codes, efficiently, to $O(10^5)$ CPU cores? (currently, largest system in the world has $\approx 220,000$ cores)
- New *programming models* and new types of architectures:
 - hybrid shared- and distributed memory
 - graphical processor units, etc.

Can require massive effort, not necessarily rewarding!

How to keep going, and to the next level: (Exascale by 2018):

- ▶ How to scale our codes, efficiently, to $O(10^5)$ CPU cores? (currently, largest system in the world has $\approx 220,000$ cores)
- New *programming models* and new types of architectures:
 - hybrid shared- and distributed memory
 - graphical processor units, etc.
 - Can require massive effort, not necessarily rewarding!
- How to better compete with other fields for computer time?

How to keep going, and to the next level: (*Exascale* by 2018):

- ▶ How to scale our codes, efficiently, to $O(10^5)$ CPU cores? (currently, largest system in the world has $\approx 220,000$ cores)
- New *programming models* and new types of architectures:
 - hybrid shared- and distributed memory
 - graphical processor units, etc.
 - Can require massive effort, not necessarily rewarding!
- How to better compete with other fields for computer time?
- How to work with *Big Data* and engage the community?
 - can we be more collaborative, a little more like other fields with trusted community codes?

How to keep going, and to the next level: (*Exascale* by 2018):

- ▶ How to scale our codes, efficiently, to $O(10^5)$ CPU cores? (currently, largest system in the world has $\approx 220,000$ cores)
- New *programming models* and new types of architectures:
 - hybrid shared- and distributed memory
 - graphical processor units, etc.
 - Can require massive effort, not necessarily rewarding!
- How to better compete with other fields for computer time?
- How to work with *Big Data* and engage the community?
 - can we be more collaborative, a little more like other fields with trusted community codes?

Future Opportunities

ullet Towards 8192^3 or (equivalent):

- NSF-funded Blue Waters, predicted 1 Pflop/s sustained execution speed, over 300,000 CPU cores
- while 4096^3 becomes easier?
- code development and choice of simulation parameters
- analyses spanning years...

Future Opportunities

- ullet Towards 8192^3 or (equivalent):
 - NSF-funded Blue Waters, predicted 1 Pflop/s sustained execution speed, over 300,000 CPU cores
 - while 4096^3 becomes easier?
 - code development and choice of simulation parameters
 - analyses spanning years...
- What will we be doing in 2018?