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Outline of This Talk

Turbulence and Petascale Computers:
some general remarks

What have we learned (examples):
intermittency, mixing, dispersion

What we hope to learn (challenges):
in both science and computing

P.K. Yeung; KITP, May 2011 – p.2/??



Turbulence and Computing

Turbulence: disorderly fluctuations over a wide range of scales in
time and 3D space, with diverse applications

efficient mixing (of heat, substances and momentum) is key to
combustion, aerodynamic drag, pollutant dispersion, etc.

Direct numerical simulation: compute all the scales, basedon
exact governing equations

for physical understanding and model development

CPU intensive (repeat: wide range of scales)

Petascale:1015 operations/sec, or bytes of data:

exponential increase in CPU power over at least 25 years,
world’s fastest currently at 2.4 Pflop/s (theoretical peak)

P.K. Yeung; KITP, May 2011 – p.3/??



A brief history of DNS

— (selected major markers) —

Orszag 1969-1971: Spectral and pseudo-spectral methods

Riley & Patterson 1972: particle tracking (323)

(Large-eddy simulation: Leonard, 1974)

Rogallo 1981: homogeneous turbulence (1283)

Kim, Moin & Moser 1987: channel flow (Chebyshev)

Various authors:∼ 5123, early to late 1990s

Kanedaet al. 2002:40963 on Earth Simulator, Japan

P.K. Yeung; KITP, May 2011 – p.4/??
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Orszag 1969-1971: Spectral and pseudo-spectral methods

Riley & Patterson 1972: particle tracking (323)

(Large-eddy simulation: Leonard, 1974)

Rogallo 1981: homogeneous turbulence (1283)

Kim, Moin & Moser 1987: channel flow (Chebyshev)

Various authors:∼ 5123, early to late 1990s

Kanedaet al. 2002:40963 on Earth Simulator, Japan

Future : Turbulence at122883, RK4, 10000 time steps in 40 hours
is an acceptance test criterion for 10-PflopBlue Waters, 2012

P.K. Yeung; KITP, May 2011 – p.4/??



Uses of Massive Computing Power

A wider range of scales (in space and/or time)

higher Reynolds number (always!)

high Schmidt number (Sc = ν/D): smaller scales

very low Schmidt number: growh of large scales

Improved accuracy at the small scales
fine-scale intermittency, thin reaction zones

Longer simulations, e.g. to provide better sampling
amount of data IS a challenge

More complex physics
e.g. stratification, rotation, MHD

More complex boundary conditions
channel, boundary layer, mixing layer (still canonical)

P.K. Yeung; KITP, May 2011 – p.5/??



More thoughts about Computers

Good access to a top-of-the-line machine would let us:

compute faster, bigger, longer; analyze deeper

compute better too? (hopefully)

But to get the best benefit is not trivial

massive parallelism (up toO(105) CPU cores)

Cyber: how to use/re-use, maintain, and share data

intense competition for CPU resources vs. other fields

new programming models to be investigated

Good science gets done only if:

good questions are being asked (needs collaborators)

humans and computers working together well

P.K. Yeung; KITP, May 2011 – p.6/??



Simulation Approach

Forced, stationary isotropic turbulence on a periodic domain,
using Fourier pseudo-spectral method (Rogallo 1981)

Resolution: in most simulations pushing the Reynolds number
kmaxη ≈ 1.5 (∆x/η ≈ 2, with kmax ≡

√
2N/3)

effects on intermittency examined in Donziset al. PoF 2008

Passive scalar fluctuations driven by a uniform mean gradient:
(∇Φ = (1, 0, 0): allows tests of local isotropy)

∂φ/∂t + u · ∇φ = −u · ∇Φ + Dφ∇2φ

Size of smallest scale for each scalar depends onSc
— unequal accuracy for multiple scalars in a given simulation

Massively parallel code, in principle up toN2 processors
(Donzis, Yeung & Pekurovsky; TeraGrid Conf. 2008)

P.K. Yeung; KITP, May 2011 – p.7/??



Simulation database

Rλ N kmaxη Sc

140 256 1.38 0.125 1
140 512 2.74 0.125 1 4
140 1024 5.48 1 4
140 2048 11.2 4 64
240 512 1.41 0.125 1
240 2048 5.14 1 8
240 4096 ∼ 11 32

390 1024 1.4 0.125 1
650 2048 1.4 0.125 1
650 4096 2.8 1 4

1000 4096 1.4

(Also recent runs on larger domains, and very lowSc)
P.K. Yeung; KITP, May 2011 – p.8/??



What have we learned:

1. Intermittency and extreme events

P.K. Yeung; KITP, May 2011 – p.9/??



Dissipation and Enstrophy

Dissipation:ǫ = 2νsijsij (strain rates squared)

Enstrophy:Ω = (ν)ωiωi (rotation rates squared)

Same mean values in homogeneous turbulence,
but moments and PDFs can be different

Both represent small scales, but most data sources suggest
enstrophy is more intermittent, contrary to expectation athigh
Reynolds no. (Nelkin 1999)

In relative dispersion, straining pulls particle pairs apart but
rotation makes them move around together

Difficulties in resolution and sampling,
nature of infrequent but extreme events

P.K. Yeung; KITP, May 2011 – p.10/??



PDFs of Dissipation and Enstrophy

Stretched-exponential fits:

fǫ(ǫ′) ∼ exp[−bǫ(ǫ′)cǫ ]

Donzis et al. PoF 2008:

PDFs ofǫ/〈ǫ〉 andΩ/〈Ω〉
coincide at extreme tails
(only at high Reynolds no.)

Similar results observed in
two 40963 simulations:

higher Reynolds no.

higher resolution

ǫ′ ≡ ǫ/〈ǫ〉; Ω
′ ≡ Ω/〈Ω〉

© PDF ofǫ/〈ǫ〉
△ PDF ofΩ/〈Ω〉

Rλ ≈ 1000, 40963

Extremeǫ usually accompanied
by largeΩ, but extremeΩ may
occur with moderateǫ

P.K. Yeung; KITP, May 2011 – p.11/??



3D Visualization

[TACC visualization staff]20483, Rλ ≈ 650: intense enstrophy (red)
has worm-like structure, while dissipation (blue) is more diffuse

P.K. Yeung; KITP, May 2011 – p.12/??



Flow variables conditioned on ǫ and Ω

From∇2(p/ρ) = 1
2(Ω − ǫ/ν), an indirect connection to pressure field?

ǫ/〈ǫ〉

Ω
/〈

Ω
〉

ǫ/〈ǫ〉

Rλ 140 Rλ 1000

At high Re, 〈p|ǫ,Ω〉 is almost symmetric across the diagonal line
— both highǫ and highΩ lead to negative pressure fluctuations
— but nonlocal nature of pressure adds some complexity

P.K. Yeung; KITP, May 2011 – p.13/??



What have we learned:

2. Turbulent Mixing (Passive Scalars)

P.K. Yeung; KITP, May 2011 – p.14/??



Turbulent Mixing: Similarity theory

(BesidesRe) the Schmidt number is also an important parameter

Sc varies:O(0.01) in liquid metals,O(1) for gaseous combustion,
∼ 7 for heat in water,O(1000) for salinity in oceans

Smallest scales thought to be

Obukhov-Corrsin: ηOC = ηSc−3/4 for Sc . 1

Batchelor: ηB = ηSc−1/2 for Sc ≫ 1

Different scaling regimes forSc . 1, ≫ 1 and≪ 1,
but data less available in latter two

Local isotropy: do the small scales remain isotropic
in response to a mean gradient?

Intermittency of scalar gradients and scalar dissipation:
what is the effect of the Schmidt number?

P.K. Yeung; KITP, May 2011 – p.15/??



Sc . 1: Obukhov-Corrsin scaling

Inertial-convective:

Eφ(k) ∼ 〈χ〉〈ǫ〉−1/3k−5/3

(for 1/L ≪ k ≪ 1/ηOC)

Yeung et al. PoF 2005:

COC ≈ 0.67 in 3D
spectrum, consistent with
survey of experiments
(Sreenivasan PoF 1996)

bottleneck apparent for
Sc = 1 (precursor tok−1

for Sc > 1?)

Compensated spectra

kη

Rλ ∼ 650, 20483

© Sc = 1

△ Sc = 1/8

Consistent with isotropic random
forcing of scalars (Watanabe &
Gotoh 2004, 2007;N, •)

P.K. Yeung; KITP, May 2011 – p.16/??



Sc ≫ 1: Batchelor’s spectrum

∼ Donzis, Sreenivasan & Yeung (FTC 2010)

Eφ(k) ∼ CB〈χ〉τηk
−1
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Sc ≪ 1: Batchelor et al. JFM 1959

“Inertial-diffusive”: Eφ(k) ∼ 〈χ〉〈ǫ〉2/3D−3k−17/3

Few data available:Sc ≪ 1 in
liquid metals and astrophysics

Needs larger domain for
larger length scales
— while keepingRe high!

Spectral cascade not the
same, since velocity is now at
“intermediate” scale

Preliminary data:Sc = 1/8,
1/32, 1/128, 1/512

kη

�
�

�
�

�	

Sc = 1/8

Sc = 1/512

Tentative support fork−17/3

(quality of data to be improved)

P.K. Yeung; KITP, May 2011 – p.18/??



Local (An)isotropy

Most lab. and DNS data

indicate∇‖φ is skewed, in

conflict with notion of local

isotropy at highRe

BeyondSc ∼ 4, skewness

drops with increasingSc

(faster ifRe is higher)

A return to isotropy at highRe

may have been masked by

finite resolution

(Donzis & Yeung FTC 2010)

Gradient skewness at variousRλ,

Sc, and resolutions:
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Intermittency of scalar gradients

Scalar gradients are highly

non-Gaussian, with∇‖φ about

10% higher flatness than∇⊥φ

Strong increase withRλ at

low Sc

High Sc: a trend of saturation

(but flatness for highestSc in

simulation may be

underestimated)

Sc needed for saturation is

lower if Re is high

Flatness of∇‖φ

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

Sc

H: Rλ 650

N: Rλ 8

P.K. Yeung; KITP, May 2011 – p.20/??



What have we learned:

3. Turbulent Dispersion (Lagrangian view)

P.K. Yeung; KITP, May 2011 – p.21/??



Lagrangian Approach and DNS

Motion of fluid particles is fundamental to turbulent dispersion
and multiphase flows

G.I. Taylor 1921, Proc. Lond. Math. Soc.:
“Diffusion by continuous movements”

L.F. Richardson 1926: particle pairs moving apart

multiparticle clusters also give useful info. on flow structure

DNS is a powerful source of Lagrangian data

particle tracking algorithm based on cubic-spline interpolation
(Yeung & Pope 1988):dx+/dt = u

+; u+(t) = u(x+(t), t)

velocity gradients sampled along particle trajectories

enormous detail under controlled conditions, for modeling

P.K. Yeung; KITP, May 2011 – p.22/??



Lagrangian Kolmogorov Similarity

Lagrangian structure function:

DL
2 (τ) ≡ 〈[u+(t + τ) − u+(t)]2〉

Range of time scales fromτη

to integral time scale,

TL ≡
∫ ∞
0 ρL(τ) dτ

For τη ≪ τ ≪ TL (“inertial”):

DL
2 (τ) = C0ǫτ

C0 used in stochastic modeling

Rλ up to≈ 1000 in DNS

(similar to expts) with

TL/τη ≈ 80: C0 → O(7)

DNS database,643 to 40963

τ/τη

DL
2

(τ)
〈ǫ〉τ

�
�
�
�
�
�
�
�
���

[Model of Sawford (1991) predicts

DL
2 (τ) well, but not higher orders]

P.K. Yeung; KITP, May 2011 – p.23/??



Dispersion Modeling

Stochastic modeling with drift and randomness terms: needTL/τη as
function of Reynolds number; and value ofC0

Sawford: multiple data sources
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Higher-order structure functions

τ/τη

〈|∆τ u+|n〉

(〈ǫ〉τ)n/2

Orders 1 to 10
Rλ ≈ 1000



























�

Much more difficult. Resolution issues due to intermittency(smallτ )
P.K. Yeung; KITP, May 2011 – p.25/??



Local flow structure

Fluid particles moving in regions of large fluctuating velocity gradients
will experience a rapid change in velocity, i.e., a large acceleration

Local straining, rotation, or combination of effects

dissipation:ǫ ≡ 2νsijsij

enstrophy:Ω ≡ ωiωi

pseudo-dissipation:ϕ ≡ ν(∂ui/∂uj)(∂ui/∂uj)

Strain-dominated vs rotation-dominated regions

strain is very important in dispersion of particle pairs

rotation can cause frequent changes in direction

Need to know statistics and time scales ofǫ, ζ andϕ, along fluid
particle trajectories, as function of Reynolds no.

P.K. Yeung; KITP, May 2011 – p.26/??



Lagrangian conditional statistics

Conditional sampling based onǫ, Ω, or ϕ along particle paths,
e.g.:

ρu(τ |Z) ≡ 〈u+(t)u+(t + τ)|Z+(t) = Z〉
〈{u+(t)}2|Z+(t) = Z〉

with Z = ǫ, Ω or ϕ in logarithmic intervals
Lagrangian time series ofǫ, Ω andϕ can be obtained by
high-order interpolation in DNS

larger acceleration and more rapid-decorrelation expected in
regions of large velocity gradients

dependence expected to last for time lags comparable to
integral time scales ofǫ+(t), Ω+(t), ϕ+(t)

A promising tool for introducing effects of fine-scale intermittency
into stochastic modeling (Lamogeseet al. JFM 2007)

P.K. Yeung; KITP, May 2011 – p.27/??



Conditional structure functions

Stochastic modeling at different levels of complexity:

Givenu
+(t), “predict” increment∆τu

+ = u
+(t + τ) − u

+(t)
(then integrate to recover displacement)

Givenu
+(t) anda

+(t), “predict” ∆τa
+ = a

+(t + τ) − a
+(t)

(then integrate to recover velocity, then displacement)

Givenu
+(t) andǫ+(t): incorporate fine-scale intermittency

Dissipation (strain), enstrophy (vorticity), or pseudo-dissipation
(all velocity gradients)

Conditional flatness factor: (withX = ǫ, Ω or ϕ)

µ4(τ |X) = 〈(∆τu+)4|X〉/〈(∆τu+)2|X〉2

“Conditional Gaussianity” is closest approximation for
acceleration given pseudo-dissipation (Yeunget al. PoF 2006)

P.K. Yeung; KITP, May 2011 – p.28/??



Local slopes and extended self-similarity

Let DL
m(τ) ∝ τ ζm

K41 givesζm = m/2, but

affected by intermittency

ESS: Consider “local slope”

ζ ′4(τ) =
dlog[DL

4 (τ)]

dlog[DL
2 (τ)]

Biferale et al. PoF 2008:

suggests “dip” inζ ′4(τ) for

τ/τη ≈ 2 due to vortices

Can intense strain rate cause a

similar observation?

Lines A-E: increasingǫ, Ω or ϕ

τ/τη

ǫ

Ω

ϕ

P.K. Yeung; KITP, May 2011 – p.29/??



Multiparticle clusters

Motions of 2,3,4 particles considered together can be related to
2nd, 3rd and 4th moments of concentration fluctuations
— triangles and tetrads also carry info on shape distortion

Richardson (1926) for mean-square separation:

〈r2〉 = g〈ǫ〉t

inertial range conditions and independent of initial separation

Focus on tetrads (Pumiret al. 2000):

Size measured by volume or (better) gyration radius:
V = 1

6
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·
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(
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)]∣

∣

R2 = 1
2n

∑n
l,m=1 |X(l) − X

(m)|2 (n = 4)

Shape:0 ≤ Λ = V 2/3/R2 ≤ 3−5/3,
or ratios of eigenvalues of a moment-of-inertia tensor
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Tetrads: Evolution of Size and Shape

Data fromRλ ≈ 1000, 40963 and
Rλ ≈ 650, 20483 runs used to test

〈R2〉/r2
0 = (3g/2)(t/t0)

3

(wheret0 = (r2
0/〈ǫ〉)1/3)
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r0

Shape shows more scaling:

t/t0

〈Λ〉 atRλ ≈ 1000

� r0

inertial and diffusive regimes:
0.45 (DNS) and 0.645 (MC)

more details in Hacklet al.
PoF May 2011
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What do we hope (and need) to learn:

A. Unresolved issues in turbulence

B. Cyber challenges and opportunities

P.K. Yeung; KITP, May 2011 – p.32/??



Issues in Turbulence and DNS

Would like to better understand (e.g.) the following:
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Issues in Turbulence and DNS

Would like to better understand (e.g.) the following:

Connections among pressure, dissipation, and enstrophy

knowledge ofǫ andΩ determines∇2p, but notp itself

A unified view ofSc-dependence in turbulent mixing
spectral transfer, local isotropy, intermittency

low or highSc, at reasonably highRe

Lagrangian intermittency in turbulent dispersion
refined similarity, info. for stochastic modeling

DNS: effects of resolution, domain size, simulation time span

Effects of more complex physics on everything above:
stratification, rotation, MHD turbulence

P.K. Yeung; KITP, May 2011 – p.33/??



Cyber Challenges

How to keep going, and to the next level: (Exascale by 2018):

How to scale our codes, efficiently, toO(105) CPU cores?
(currently, largest system in the world has≈ 220, 000 cores)
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Future Opportunities

Towards 8192
3 or (equivalent):

NSF-fundedBlue Waters, predicted 1 Pflop/s sustained
execution speed, over 300,000 CPU cores

while 40963 becomes easier?

code development and choice of simulation parameters

analyses spanning years...

P.K. Yeung; KITP, May 2011 – p.35/??



Future Opportunities

Towards 8192
3 or (equivalent):

NSF-fundedBlue Waters, predicted 1 Pflop/s sustained
execution speed, over 300,000 CPU cores

while 40963 becomes easier?

code development and choice of simulation parameters

analyses spanning years...

What will we be doing in 2018?

P.K. Yeung; KITP, May 2011 – p.35/??
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