Holographic Complexity of Domain Wall Spacetimes

Zhencheng Wang (Nankai U.)

Work with Prof. Donald Marolf (UCSB) and Zicao Fu (UCSB)

2017 Undergraduate Physics Research Symposium

September 15, 2017

Introduction

Penrose conformal diagram of an AdS-Schwarzschild spacetime

- AdS/CFT correspondence
 - Spacetime geometry in D-dimensional bulk
 - Quantum state on (D-1)-dimensional boundary

Wormholes

- Outside the horizon: Static spacetimes
- Inside the horizon: untraversable wormholes
- What is happening there?

Complexity

On the boundary

Complexity = The minimum number of quantum gates

Two conjectures on holographic complexity

Complexity = Volume (C=V)

$$C = \frac{V}{G_N l_{AdS}}$$

Complexity = Action (C=A)

$$\mathcal{C} = \frac{\mathcal{A}}{\pi \hbar}$$

Figure 1 in [A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Phys. Rev. D93 (2016) no.8, 086006]

How to distinguish the two conjectures?

- C=V vs C=A
- They together passed many tests in shock wave spacetimes

- Volume and action have different sensitivities to cosmological constants
- Construct a spacetime with two different cosmological constants

Domain wall spacetimes

Blue: domain wall trajectory

Green: singularity

Yellow: infinity

Spherical symmetry
Time reversal symmetry

- Domain wall: a kind of matter of co-dimension 1
- Pasting two pieces of known spacetimes with a domain wall
- Reference state: pure AdS (Λ =-1) $\mathcal{C} = \mathcal{C}_{domain\ wall} \mathcal{C}_{pure\ AdS}$
- $t_{bndy} = 0$
- Calculate \mathcal{C}_V and \mathcal{C}_A

The two conjectures are distinguished!

Domain wall tension $\kappa = 1.25$ Mass of BTZ black hole $M = 10^6$ $-5.06 < \Lambda_{in} < -2.57$

In higher dimensions

C=V or C=A?

We have distinguished the two conjectures.

 To know which conjecture is more reliable, we need to estimate the complexity on the boundary.

Acknowledgement

- Professor Donald Marolf
- Zicao Fu

Thank you!