Data Analysis in Gd(III) Spin Labeled CW-EPR Distance Measurements for Proteins

Yuanqi Lyu | lyu@physics.ucsb.edu

Institute of Terahertz Science and Technology (ITST), UCSB
Mentors: Prof. Mark S. Sherwin, Dr. Marzieh Kavand
What is CW-EPR?

- **EPR**: Electron paramagnetic resonance.
 - Manipulating electron spins in strong and even magnetic field with Terahertz E&M waves.
 - Just a bit of like NMR but for electrons.

![Zeeman Splitting Diagram](image)

- **FIG 1**: Zeeman Splitting Diagram.
What is CW-EPR?

- **CW**: Continuous Wave.
 - Input “continuous” THz radiation of constant frequency and magnitude.
 - Sweep background magnetic field to get absorption pattern.

- **Line-shape**:
 - Derivative of peak in this pattern is usually called Line-shape.

- **FIG 2: CW-EPR Line-shape (Simplified Demonstration)**
 - **TOP**: Absorption pattern.
 - **Bottom**: Line-shape. Zoomed in derivative of the absorption peak.

- Absorption (Normalized by Its Integral)
 - Sharp Resonance Peak
 - Broad Base Absorption

- Line–shape (Normalized by Its Double Integral)
 - Derivative of the Peak
CW-EPR in Protein Studies: Make a Movie!

- By CW-EPR, we can observe structures of proteins in near natural environments:
 - Non-invasive;
 - Aquatic;
 - Near room temperature (> 200 K tested).

- FIG 3a: Some Membrane Proteins. [Credit: Wikipedia]

- FIG 3b: The protein we are study now (photo-activated proton pump). [Credit: Dr. Jessica Clayton]
CW-EPR in Protein Studies: Basic Steps

- A prove-of-concept test for Step 1 and 2 was done with ruler molecules.

Step 1

CW-EPR Line-shapes
Line-shapes proteins are measured, after Gd(III) spin labels attached.

Step 2

Distance between Labels
Contrast and analysis of the line-shapes with **CWdipFit** gives us the distance between spins.

Step 3

Reconstruct the Structure
From these distance data, live structures of proteins can be reconstructed.
Step 1: Labeling Rulers

- The labels are either free, or separated at fixed distances by ruler molecules.
- **Ruler molecules**: Rigid molecules that can separate spin labels at given distances.
- The labels are complex of Gd(III) ion (spin 7/2).

FIG 4: Labeling of rulers.

LEFT: Free labels; **RIGHT**: Labels at fixed separations.

(Only for demonstration, NOT real labels)
Step 1: Line-shapes

- The line-shape get **broadened** with introduction of second label.

[FIG 5]: Line-shapes from labels.

LEFT: Intrinsic line-shape for free labels;
RIGHT: Broadened line-shape for labels separated by rulers.

[Data Credit: I_1 ruler by Dr. Jessica Clayton at 30 K]
Step 2: Why it Broadens?

- From Zeeman splitting, we know part of Hamiltonian for our 2 Gd(III) spin system as:

\[\hat{H}_Z = \sum_{n=1}^{2} \mu_B g \mathbf{B} \cdot \hat{S}_n. \]

- As the Gd(III) labels interact with each other, we need Hamiltonian for spin-spin (dipolar) interactions.

\[\hat{H}_{SS} = \hat{S}_1 \cdot T \cdot \hat{S}_2. \]

- It provides a significant dipolar broadening determined by spin-spin distance, which can be analyzed as a Pake convolution broadening.

- It dominates with high magnetic field.
Step 2: Pake Convolutional Broadening (Fixed r)

1. Intrinsic Line-shape

FIG 6a: Intrinsic Line-shapes.

2. Pake pattern

FIG 6b: Pake pattern at $r = 2.0$ nm. (via EasySpin.)

3. Convolution

FIG 6c: Simulated broadening.
Step 2: Pake Convolutional Broadening (r Distribution)

- In reality, distance are not single fixed values, but a **distribution**.
- We suppose distribution in form of several Gaussians combined.
- The combined line-shape are **linear combination** of line-shapes of different r weighted by the distribution.

4. Distribution

FIG 7a: Combined Gaussian distribution of r.
- Peak at 4.0 nm
- Peak at 2.5 nm

5. Linear Combination

FIG 7b: Simulated broadening for this distribution.
Step 2 Fit Function and Fit Process (CWDipFit)

- In other words, we create a **fit function** that can simulate broadening with any distribution of spin-spin distance r.

 - Fit the function with Simplex / direct-search method to experimentally observed line-shape to get distribution of r.

 - This is method is indeed the mechanism of package **CWDipFit**, which we modified and now reverse-engineered for this usage.
Result: Distance Measurement with 1_1 Ruler

- For our 1_1 ruler:
 - Theoretical distance between spin labels is: \(2.1\ \text{nm}\).
 - With our fitting with CWdipFit, we measure the distance as: \((2.03 \pm 0.05)\ \text{nm}\).

➢ FIG 8a: Distribution of spin-spin distance \(r\) from the fit.

➢ FIG 8b: Fit result compared to experimental line-shape.

2018 UCSB Undergrad Summer Research Symposium
Conclusion

- Distance measurement from CW-EPR line-shape analysis of Gd(III) labels is a reliable method of probing structures.

- Distances **up to ~ 3.4 nm** are proved to be measurable, with temperature up to **above 200 K**.
Acknowledgement

Special Thanks for Dr. Marzieh Kavand and Blake Wilson for help and suggestions!
Extra Slide: Ruler and Label

- **FIG 9**: Structures of ruler molecules and labels. [Credit: Jessica Clayton et al., *Phys.Chem.Chem.Phys.*, 2017, **19**, 5127]
Extra Slides: Full Hamiltonian

Full Hamiltonian is given as:

$$\hat{H} = \hat{H}_Z + \hat{H}_{SS} + \hat{H}_{ZFS} + \hat{H}_{HF}.$$

Here,

- \hat{H}_Z is for Zeeman splitting,
 $$\hat{H}_Z = \sum_{n=1}^{2} \mu_B g_B B \cdot \hat{S}_n.$$

- \hat{H}_{SS} is for spin-spin (dipolar) interaction,
 $$\hat{H}_{SS} = \hat{S}_1 \cdot T \cdot \hat{S}_2.$$

- \hat{H}_{ZFS} is for zero field splitting (unique to spins higher than 7/2),
 $$\hat{H}_{ZFS} = \sum_{n=1}^{2} \hat{S}_n \cdot D_n \cdot \hat{S}_n.$$

- \hat{H}_{HF} is for hyperfine couplings,
 $$\hat{H}_{HF} = \sum_{n=1}^{2} \hat{S}_n \cdot A_n \cdot \hat{I}_n.$$
THz Source: A solid-state source, which multiplies a 15 GHz synthesizer 16× to achieve an output frequency of 240 GHz, produces CW power of 50 mW.

Sample Holder: Samples of 8–10 mL volume were placed into a Teflon sample cup. The sample was backed by a mirror and mounted within a modulation coil at the end of an over-modeled waveguide (Thomas Keating Ltd). This assembly was loaded into a continuous flow cryostat (Janis Research Company) mounted in the room temperature bore of the magnet.

Solution: Glass transition of a 60:40 (v:v) mixture of D2O and glycerol-d8 used as the matrix for the EPR experiments at 30 K.

This page is left:

|Intentionally Blank⟩.
This page is left:

\[
\frac{|\text{Intentionally Blank}\rangle + |\text{Unintentionally Blank}\rangle}{\sqrt{2}}.
\]

[Gag Credit: Dr. Eric Mefford]