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1 Introductory Remarks

• A genuine research experience for undergraduates is fast becoming a

prerequisite for jobs and graduate school admission. It is also an effective

educational strategy.

• Prospects and problems of incorporating undergraduates in theoretical

research.

• Pedagogically oriented research as an educational strategy.
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2 Formulation

• The popular demonstration involving a permanent magnet falling through a

conducting pipe is treated as an axially symmetric boundary value problem.

• Specifically, Maxwell’s equations are solved for an axially symmetric magnet

moving coaxially inside an infinitely long, conducting cylindrical shell of

arbitrary thickness at non-relativistic speeds.

• Previous treatments (Saslow) idealized the problem as a point dipole moving

slowly inside a pipe of negligible thickness.

• The results allow a rigorous study of eddy currents and magnetic braking

under a broad range of conditions.

3



.......a........>

 L 

v

................R1........>

................R2...........>

Figure 1: A cylindrically symmetric permanent magnet moving coaxially inside

a conducting pipe.
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• A permanent (or hard) magnet is a ferromagnetic material whose

magnetization does not change when immersed in (moderate) external fields,

electromagnetic or gravitational.

• Thus, by the equivalence principle, a permanent magnet is not affected by

acceleration and can thereby be characterized by equivalent sources in its rest

frame S ′ (with cylindrical space coordinates ρ′, φ′, z′):

M′(ρ′, z′) = mP (ρ′, z′)ẑ′, (1)

• Equivalently, since JM=∇×M,

J′

M (ρ′, φ′, z′) = −m[∂P (ρ′, z′)/∂ρ′]φ̂′ (2)

• In the laboratory frame, we find JM (ρ, z, φ, t) = J′

M (ρ′, φ′, z′), or

JM (ρ, φ, z, t) = −m
∂P [ρ, z − zM (t)]

∂ρ
]φ̂, (3)
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• Using the standard solution for the vector potential in the quasi-static limit,

we find after some algebra,

ÃM (ρ, k) = −µ0m

∫ +∞

0

dρ′
∂P̃ (ρ′, k)

∂ρ′
ρ′I1(|k|ρ′)K1(|k|ρ). (4)

for the moving magnet in free space.

• Now use the above field as the “incident field”:

a ≤ ρ ≤ R1 : Ã(i)(ρ, k) = ÃM (ρ, k) + b1(k)I1(|k|ρ), (5)

R1 ≤ ρ ≤ R2 : Ã(ii)(ρ, k) = b2(k)K1(
√

κ2ρ) + b3(k)I1(
√

κ2ρ), (6)

R2 ≤ ρ : Ã(iii)(ρ, k) = b4(k)K1(|k|ρ). (7)

• Continuity conditions are used to find the unknown “b” coefficients. Here b0

represents the “incident field” of the moving magnet, while the other

coefficients correspond to “reflections” and “transmissions.”
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• Upon imposing the continuity conditions, we find the following set of

equations:

b0(k)K1(|k|R1) + b1(k)I1(|k|R1) = b2(k)K1(
√

κ2R1) + b3(k)I1(
√

κ2R1), (8)

b2(k)K1(
√

κ2R2) + b3(k)I1(
√

κ2R2) = b4(k)K1(|k|R2), (9)

|k|
µ0

[b0(k)K0(|k|R1)−b1(k)I0(|k|R1)] =

√
κ2

µ
[b2(k)K0(

√
κ2R1)−b3(k)I0(

√
κ2R1)],

(10)√
κ2

µ
[b2(k)K0(

√
κ2R2)] − b3(k)I0(

√
κ2R2)] =

|k|
µ0

[b4(k)K0(|k|R2)]. (11)

• This set yields the unknown coefficients which define the solution to our

problem.
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3 Results

The Drag Force

• The Drag force on the magnet is calculated straightforwardly. The result in

terms of the b-coefficients is

F = 2πiµ−1
0 ẑ

∫ +∞

−∞

kdkb0(−k)b1(k). (12)

• For the uniformly magnetized cylinder we find

Funi = −v̂
µ0m

2

2π2

∫ +∞

0

dkk3

[

sin(kL/2)

(kL/2)

]2[
I1(ka)

(ka/2)

]2

Im[Q(k)], (13)

where Q(k) = b1(k)/b0(k).
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Limiting Cases

(velocity= v, conductivity=σ, relative permeability=µrel)

• Low magnet speed(good field penetration into the pipe):

Flsp ∼= −Cσvv̂ (µrelµ0σvR1 ≪ 1), (14)

• High magnet speed(skin effect on the inner pipe wall):

Fhsp = −0.274m2

R
9/2
1

F1(a/R1, L/R1)

√

µ

σv
v̂, (µrelµ0σvR1 ≫ 1), (15)

• Idealized Model(low magnet speed, point dipole, thin-walled pipe; Saslow):

Fidl = −45µ2
0m

2s

1024R1
4 σvv̂, (16)

• Note that F depends on σ and v through the combination σv.
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Figure 2: Plot of the drag force versus the magnet speed for a fixed value of

the dipole moment and four different shape parameters (L/2a, a/R1): (a) typi-

cal cylinder, ( 2
1 , 0.60), (b) “square” cylinder, ( 1

1 , 0.60), (c) “point-like cylinder”

( 1
1 ,≃ 0), (d) short cylinder ( 5

8 , 0.96), and (e) circular wafer, (≃ 0, 3
5 ). The

dashed line represents the idealized limit.
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Figure 3: Plot of the drag force versus the conductivity of the pipe for case (d)

with v = 0.10 m s−1.
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Limiting Cases . . .

• Highly Diamagnetic Pipe(µrel → 0, as in magnetic flux expulsion, e.g.,

the Meissner effect):

Fhdm = − µ2
0m

2σv

2π
√

2R3
1

[ln(R2/R1)]
−

1

2 µ
3/2
rel v̂. (17)

• Highly Paramagnetic Pipe(µrel ≫ 1, as for “soft” ferromagnetic

materials):

Fhpm = −0.0536µ2
0m

2

R
7/2
1

F0(a/R1, L/R1)

√

σv

µ
v̂, (18)
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Figure 4: Plot of the drag force versus the relative permeability of the pipe for

case (d) with v = 1.0 m s−1.
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4 Concluding Remarks

• In retrospect, the magnet-pipe system offers a rich landscape of concepts and

methods, demonstrating the interplay of physical reasoning with mathematical

analysis.

• The published paper is supplemented with a computer program posted on

the web which can be used to compute the drag force.
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