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1 Introductory Remarks

e A genuine research experience for undergraduates is fast becoming a

prerequisite for jobs and graduate school admission. It is also an effective

educational strategy.

e Prospects and problems of incorporating undergraduates in theoretical

research.

e Pedagogically oriented research as an educational strategy.



2 Formulation

e The popular demonstration involving a permanent magnet falling through a

conducting pipe is treated as an axially symmetric boundary value problem.

e Specifically, Maxwell’s equations are solved for an axially symmetric magnet
moving coaxially inside an infinitely long, conducting cylindrical shell of

arbitrary thickness at non-relativistic speeds.

e Previous treatments (Saslow) idealized the problem as a point dipole moving

slowly inside a pipe of negligible thickness.

e The results allow a rigorous study of eddy currents and magnetic braking

under a broad range of conditions.
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Figure 1: A cylindrically symmetric permanent magnet moving coaxially inside

a conducting pipe.



e A permanent (or hard) magnet is a ferromagnetic material whose
magnetization does not change when immersed in (moderate) external fields,
electromagnetic or gravitational.

e Thus, by the equivalence principle, a permanent magnet is not affected by
acceleration and can thereby be characterized by equivalent sources in its rest
frame S’ (with cylindrical space coordinates p’, ¢’, 2’):

M'(p',2") =mP(p',2")2, (1)

e Equivalently, since Jy;=V x M,

Im(p,¢',2") = —mloP(p',2")/0p') " (2)

e In the laboratory frame, we find Jy;(p, z,0,t) = Iy (p', @', 2"), or
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e Using the standard solution for the vector potential in the quasi-static limit,

we find after some algebra,
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Ans(p k) = —pam [ g T 1y (k1) K (K1) (4)
for the moving magnet in free space.

e Now use the above field as the “incident field”:

a<p<Ri: AD(p, k)= An(p k) + b1 (k)1 (|k|p), (5)
Ry < p<Ry: AW (p k) = by(k)K1(VK2p) + bs(k)[1(VK2p), (6)
Ry < p: AU (p, k) = ba(k) K1 (|k|p). (7)

e Continuity conditions are used to find the unknown “b” coefficients. Here bg
represents the “incident field” of the moving magnet, while the other

coefficients correspond to “reflections” and “transmissions.”



e Upon imposing the continuity conditions, we find the following set of

equations:

bo (k) K1 (|k|R1) + br (k)11 (k| Ry) = ba (k) K1 (VK2Ry) + bs(k) 1 (VK2Ry),  (8)

ba (k) K1 (VK2 Ry) + b3 (k)11 (VK2 Ry) = by(k) K1 (|k| R2), (9)
%[bo(k)Koﬂk\Rl)—bl(k)IO(Vf\Rl)] = @[bz<k>Ko<@Rﬂ—%(’f)%(@w’
(10)

g[%(m%(m@] - bWV R = (k) Ka(HRD) (1)

e This set yields the unknown coeflicients which define the solution to our

problem.



3 Results

The Drag Force

e The Drag force on the magnet is calculated straightforwardly. The result in
terms of the b-coefficients is
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F = 27Tiu512/ kdkbo(—k)by (k). (12)
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e For the uniformly magnetized cylinder we find
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where Q(k) = by (k) /bo (k).
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Limiting Cases
(velocity= v, conductivity=c, relative permeability={i.q;)
e Low magnet speed(good field penetration into the pipe):
F'P 22 _Covv (prepioovR < 1), (14)

e High magnet speed(skin effect on the inner pipe wall):

0.274m> .
Fhsp — _ 7 Fi(la/Ri, L/ R1)4| %V, (phrerproov Ry > 1), (15)
1

e Idealized Model(low magnet speed, point dipole, thin-walled pipe; Saslow):

' 45 2,2
Fidl = 2P0 P o9, (16)
1024R,

e Note that F depends on o and v through the combination ow.
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Figure 2: Plot of the drag force versus the magnet speed for a fixed value of
the dipole moment and four different shape parameters (L/2a,a/R1): (a) typi-
cal cylinder, (%,0.60), (b) “square” cylinder, (%,0.60), (c¢) “point-like cylinder”
(1,2 0), (d) short cylinder (2,0.96), and (e) circular wafer, (~ 0,2). The
dashed line represents the idealized limit.
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Figure 3: Plot of the drag force versus the conductivity of the pipe for case (d)
with v = 0.10 m s~ 1.
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Limiting Cases ...

e Highly Diamagnetic Pipe(u,; — 0, as in magnetic flux expulsion, e.g.,

the Meissner effect):
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e Highly Paramagnetic Pipe(u,¢; > 1, as for “soft” ferromagnetic

0.053612m> [ov
thm = — R7720 f()(CL/Rl, L/Rl) 7V7

1

materials):

(17)

(18)
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Figure 4: Plot of the drag force versus the relative permeability of the pipe for
case (d) with v = 1.0 m s~ 1.
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4 Concluding Remarks

e In retrospect, the magnet-pipe system offers a rich landscape of concepts and
methods, demonstrating the interplay of physical reasoning with mathematical

analysis.

e The published paper is supplemented with a computer program posted on

the web which can be used to compute the drag force.
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