Angular distribution of energy spectrum in two-dimensional β-plane turbulence in the long-wave limit
Izumi Saito and Keichi Ishioka (Kyoto University)

Abstract
The time-evolution of two-dimensional decaying turbulence governed by the long-wave limit, in which $L/\lambda = 0$, of the quasi-geostrophic equation is investigated numerically. Here, L_0 is the Rossby radius of deformation, and L is the characteristic length scale of the flow. As the degree of nonlinearity decreases, more energy accumulates in a wedge-shaped region [where $|l| > \sqrt{3}|k|$] in the two-dimensional wavenumber space. Here, k and l are the longitudinal and latitudinal wavenumbers, respectively. When the degree of nonlinearity is decreased further, energy concentrates on the lines of $l \approx \pm 3k$. These results are interpreted based on the conservation of zonostrophy, which is an extra invariant other than energy and enstrophy and was determined in a previous study. Considerations concerning the appropriate form of zonostrophy for the long-wave limit and a discussion of the possible relevance to Rossby waves in the ocean are also presented.

1. Two-dimensional turbulence on a β-plane

- governed by Quasi-geostrophic equation.
- ψ: stream function
- β: deformation radius
- γ: y-derivative of Coriolis parameter
- tends to have a zonally elongated structure.
 - Effect of β-term
 - prevents upscale energy cascade.
 - makes energy cascade anisotropic (Rhines effect).
 - becomes prominent when $L - L_0$.
- Zonostrophy
- used to explain anisotropic energy cascade (Balk, 2005).
- conserved when the nonlinearity is sufficiently weak.
- named by Nazarenko and Quinn (2009).

2. Purpose of this study

- Various parameter regimes
 - There are six combinations of the three length scales L, L_0, and L_0 (Table 1).
 - Regimes (5) and (6) ($L_0 < L_0$) are not well-studied.
- We consider the long-wave limit ($L/\lambda \rightarrow 0$) as an extreme case and:
 1. derive the asymptotic form of zonostrophy.
 2. investigate the anisotropy of energy cascade and check the conservation of zonostrophy (by numerical experiments).

3. Long-wave limit

- Long-wave limit of quasi-geostrophic equation
 - Consider the quasi-geostrophic equation:
 - In the long-wave limit ($L/\lambda \rightarrow 0$), the operator in the first term expands as follows:
 - After a proper Galilean transform and nondimensionalization, we get:
 - Long-wave limit of QG equation
 - Long-wave limit of zonostrophy

4. Numerical experiments

- Experimental setup
 - Governing equation:
 - Long-wave limit of QG eq. + hyper viscosity
 - (Freely decaying turbulence)
 - Results
 - 2D energy spectrum (average of 41 ensemble members) and their angular distribution.

5. Summary

- In the present study, we studied 2D turbulence governed by the long-wave limit of quasi-geostrophic equation and revealed:
 - (1) The asymptotic form of zonostrophy.
 - (by numerical experiments)
 - (2) The relationship between the parameter γ and anisotropy of 2D energy spectrum.
 - $\gamma > 1$: Accumulation in the wedge-shaped region W.
 - $\gamma \geq 1$: Concentration around $\theta = 60^\circ$.

6. Discussion

- 1st baroclinic Rossby waves in the mid-latitude ocean
 - wave length: several hundreds – thousand (km)
 - characteristic velocity scale: $U = 1$ (cm/s)
 - observed in the mid-latitude ocean (L_0 is several tens (km))
 - their wavenumber vector typically deviate from the zonal by 50°– 80°
 - For example, for 25°N latitude, $|l/|U| = 5.8$ (cm/s) and we get:
 - $\beta \sim \frac{|l/|U|}{L_0} \sim \frac{|l/|U|}{L_0} = 0$, which satisfies the condition for anisotropy ($\gamma > 1$).

References

Table 1

<table>
<thead>
<tr>
<th>γ</th>
<th>Regime</th>
<th>Dimension</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 < \gamma < 0.25$</td>
<td>L < L_0 < L_0</td>
<td>YES</td>
<td>0.1</td>
</tr>
<tr>
<td>$0.25 \leq \gamma < 1$</td>
<td>L < L_0 < L_0</td>
<td>NO</td>
<td>0.2</td>
</tr>
<tr>
<td>$\gamma = 1$</td>
<td>L < L_0 < L_0</td>
<td>YES</td>
<td>0.3</td>
</tr>
<tr>
<td>$\gamma = 5$</td>
<td>L < L_0 < L_0</td>
<td>NO</td>
<td>0.4</td>
</tr>
<tr>
<td>$\gamma > 5$</td>
<td>L < L_0 < L_0</td>
<td>NO</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Time-evolution of zonostrophy (Z) for five γ.

Clear contrast across the boundary ($\theta = 60^\circ$).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Domain</th>
<th>Zonostrophy parameter</th>
<th>Quasi-geostrophic parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta = 0.25, L_0, L_0$</td>
<td>Dimensionless number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta = 0.25, L_0, L_0$</td>
<td>Zonostrophy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta = 0.25, L_0, L_0$</td>
<td>Quasi-geostrophic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References