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~ Summary

/- Zonostrophic instability [Srinivasan & Young 2012] and \
modulational instability [Gill 1974, Connaughton et al. 2010] are
closely connected. We show that the dispersion relations agree
exactly for the case of a single background primary wave.

« Zonal flow as pattern formation:

« Using CE2, we extend the calculation of zonostrophic instability
into the regime of self-consistent nonlinear interactions between
zonal flows and fluctuations

« Results: find nonunique solutions to CE2 with varying jet
wavelengths, and merging jets governed by stability boundaries

K. For more details, a preprint is available (jb oarker@princeton.edu)/

Background \
/Modulational Instability (MI) \

* For the unforced, undamped Charney-Hasegawa-Mima equation
in an infinite domain, a single, monochromatic wave (the primary
wave) is an exact solution to the nonlinear equation.
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« Perturb around this wave and linearize the equations. In general,
an infinite coupled system must be kept (Gill 1974)

 Consider the 4-Mode-Truncation: the 4 retained modes are the
primary wave p, the secondary wave q, and the sidebands p = q.

Exact dispersion relation [Connaughton et al. 2010]:
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A = eigenvalue (growth rate) /

/ Zonostrophic Instability (Z1I)

Homogeneous turbulence, described by a correlation function or
spectrum, is unstable to a coherent zonal flow perturbation

Dispersion Relation from CE2 of Charney-Hasegawa-Mima equation
(allowing for finite deformation radius) [Srinivasan & Young 2012]
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Connection between Z|I and Ml \

Wg(k) = (2m)?A[§(k — p) + d(k + p)]

To correspond to a streamfunction amplitude %o, take 4 = 2(p> + L;?)".
Also take . — 0,

The 4-mode-truncation MI dispersion relation
with ¢, = 0, and the ZI dispersion relation
agree exactly.

Extension to perturbations that are not zonally symmetric

Don’t require ¢, = 0 now. We use the CE2 formulation of Bakas &
Ioannou (2013) which allows for arbitrary coherent structures and
not just zonally symmetric structures.

Again, the 4MT MI dispersion relation and
the generalized ZI dispersion relation
agree exactly.

Note on wave kinetics: CE2 is an exact description of quasilinear

behavior, while the wave-kinetic formalism is only valid for long-

wavelength (small ¢) mean fields. The ZI dispersion relation here
encompasses the wave-kinetic calculation of modulational

/ As the background spectrum Wy for ZI, take a single primary wave:\

instability [Manin & Nazarenko 1994, Smolyakov et al. 2000], but

\ is also valid for arbitrary q. J

Bifurcation to Inhomogeneous Turbulence
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Control parameter Zonal flow wavenumber

Multiscale perturbation expansion of CE2 gives an equation for the
spatially varying, complex amplitude of the bifurcating mode as a
solvability condition at third order

u=e/?u; +euy + € 2uz + - -
u; = Ay, t)e' v + ce.
CoatA(y, t) — c1eA + CQ@%A — 03|A|2A

“"Real Ginzburg-Landau Equation”, is constrained by symmetries to
have universal behavior. (Can rescale all coefficients to unity)

« For any k% < ¢, A=+e— k2" is a solution
With all ¢; = 1,

- Only solutions with k? < ¢/3 are stable

Merging behavior [Re(A) shown]
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Calculation of Equilibrium & Stability

/ CE2 Equilibrium \

« Assume a given zonal flow wavenumber g

- Expand solution as a Fourier—Galerkin series with coefficients U,
Wi np to be determined.
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* Project onto the basis functions to generate a set of nonlinear
algebraic equations

« Then use Newton’s method to solve for the equilibrium

* Repeat for multiple values of g (multiple solutions)

Stability

- Consider perturbations dW(z,y | v,t), 6U(y,t) about an equilibrium

« Equilibrium is periodic iny : expand perturbation as a Bloch state
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« Equilibrium is unstable if there exists an eigenvalue o with positive
kreal part (for any Q) J

Stability Diagram for CE2
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Idealized, infinite system: many zonal flow wavelengths correspond
to a stable solution
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Zonal flow wavenumbers in the unstable region must evolve to get
\ inside the stable region — manifests as merging jets J
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