Angular distribution of energy spectrum in two-dimensional β-plane turbulence in the long-wave limit

Izumi Saito and Keiichi Ishioka (Kyoto University)

Abstract

The time-evolution of two-dimensional decaying turbulence governed by the long-wave limit, in which $L_D/L \rightarrow 0$, of the quasi-geostrophic equation is investigated numerically. Here, L_D is the Rossby radius of deformation, and L is the characteristic length scale of the flow. As the degree of nonlinearity decreases, more energy accumulates in a wedge-shaped region where $|| > \sqrt{3}|k|$ in the two-dimensional wavenumber space. Here, k and I are the longitudinal and latitudinal wavenumbers, respectively. When the degree of nonlinearity is decreased further, energy concentrates on the lines of I = $\pm \sqrt{3}k$. These results are interpreted based on the conservation of zonostrophy, which is an extra invariant other than energy and enstrophy and was determined in a previous study. Considerations concerning the appropriate form of zonostrophy for the long-wave limit and a discussion of the possible relevance to Rossby waves in the ocean are also presented.

<u>1. Two-dimensional turbulence</u>	<u>on a β-plane</u>
 governed by Quasi-geostrophic equation. 	ψ field
$\frac{\partial}{\partial t} \left(\nabla^2 \psi - \frac{1}{L_D^2} \psi \right) + \beta \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial \nabla^2 \psi}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \nabla^2 \psi}{\partial x} = 0$	y Jacobi Carlos

- ψ : stream function L_D : deformation radius β : y-derivative of Coriolis parameter
- tends to have a **zonally elongated structure.**
 - Effect of β-term
 - prevents upscale energy cascade.
 - makes energy cascade anisotropic (Rhines effect).
 - becomes prominent when $L \sim L_{\beta}$.
 - L : length scale of the flow (U: velocity scale of the flow)
 - L_{β} : Rhines scale $L_{\beta} = \sqrt{U/\beta}$

Zonostrophy

 $\psi(x,y,t) = rac{1}{2\pi} \int \hat{\psi}_{\mathbf{k}}(t) \, \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \mathrm{d} \mathbf{k}$

 $\int \mathbf{k} = (k, l)$

 $\lfloor \mathbf{x} = (x, y)$

- quasi-invariant for QG equation (Balk, 1991).
- used to explain anisotropic energy cascade (Balk, 2005).
- conserved when the nonlinearity is sufficiently weak.
- named by Nazarenko and Quinn (2009).

2. Purpose of this study

- Various parameter regimes
 - There are six combinations of the three length scales L, L_D and L_β (Table 1)
- Regimes (5) and (6) (L>L_D, L_β) are not well-studied.

No.	Regime	Anisotropy	МЕМО
(1)	$L < L_{\beta} < L_{\rm D}$		 Move to regime (2) due to upscale energy cascade
(2)	$L_{\beta} < L < L_{\rm D}$	YES	• Predominance of zonal flow
(3)	$L < L_{\rm D} < L_{\beta}$	NO	 Checked by Okuno and Masuda (2003)
(4)	$L_{\rm D} < L < L_{\beta}$	NO	 Checked by Okuno and Masuda (2003)
(5)	$L_{\beta} < L_{\rm D} < L$		Target of this study
(6)	$L_{\rm D} < L_{\beta} < L$		Target of this study
Table 1			

• **Results**

• 2D energy spectrum (average of 41 ensemble members) and their angular distribution

FIG. 3. (a) Two-dimensional energy spectrum at t = 0 within a rectangular domain of |k| $|l| \le 25$ averaged over 41 ensemble members. (b)–(f) Same as (a) except that at t = 0.4for $\gamma = 0, 0.25, 1, 5$, and 20, respectively. E - x indicates 10^{-x} . In each figure, the lines of $l = \pm \sqrt{3k}$ are drawn for reference.

- : Isotropic - $\gamma = 0$
- γ =0.25 : Slightly elongated along the l-axis
- $\gamma = 1, 5$: Accumulation in the wedge-shaped region W
- : Concentration around $\theta = 60^{\circ}$ - γ=20
 - $(\theta = \tan ||/k|)$ (Connaughton et al., 2011)
- Time-evolution of zonostrophy
 - Zonostrophy is well-conserved for larger value of γ (=5, 20).

random Ψ field

Label: 10[×]

2D energy spectrum

allis and Maltrud, 1993)

(Rhines, 1975)

- We consider the **long-wave limit** $(L_D/L \rightarrow 0)$ as an extreme case and:
 - 1. derive the asymptotic form of zonostrophy.
 - 2. investigate the anisotropy of energy cascade and check the conservation of zonostrophy (by numerical experiments).

3. Long-wave limit

• Long-wave limit of quasi-geostrophic equation

Consider the quasi-geostrophic equation:

In the long-wave limit $(L_D/L \rightarrow 0)$, the operator in the first term expands as follows:

Nondimensionalization

Time-evolutions of zonostrophy(Z) for five γ s.

5. Summary

- In the present study, we studied 2D turbulence governed by the long-wave limit of quasi-geostrophic equation and revealed:
 - (1) The asymptotic form of zonostrophy.

(by numerical experiments)

(2) The relationship between the parameter γ and anisotropy of 2D energy spectrum.

- $\gamma > 1$: Accumulation in the wedge-shaped region W.
- $\gamma \gg 1$: Concentration around $\theta = 60^\circ$.
- * Accumulation in wedge-shaped region W can be explained by conservation of zonostrophy.

6. Discussion

- 1st baroclinic Rossby waves in the mid-latitude ocean
 - wave length : several hundreds thousand (km)
 - characteristic velocity scale : $U \sim 1$ (cm/s)
 - observed in the mid-latitude ocean ($L_D \sim$ several tens (km))

: Long-wave limit of QG equation

• Long-wave limit of zonostrophy

We found the following form:

$$Z = \iint \phi_{\mathbf{k}} \varepsilon_{\mathbf{k}} d\mathbf{k} \begin{cases} \varepsilon_{\mathbf{k}} = \frac{1}{2} |\hat{\psi}_{\mathbf{k}}|^2 \text{ (: 2D energy spectrum)} \\ \frac{1}{|k|} (|l| < \sqrt{3}|k|) \\ \phi_{\mathbf{k}} = \begin{cases} 1/|k| (|l| < \sqrt{3}|k|) \\ 0 (|l| > \sqrt{3}|k| \text{ or } |\mathbf{k}| = 0) \\ 1/(2|k|) (|l| = \sqrt{3}|k| \text{ and } |\mathbf{k}| \neq 0) \end{cases} \end{cases} \overset{60}{\xrightarrow{30}} \overset{30}{\xrightarrow{-30}} \overset{-30}{\xrightarrow{-60}} \overset{-30}{\xrightarrow{-60}$$

 conserved when the nonlinearity is sufficiently weak (i.e. when $\gamma \gg 1$)

k Distribution of ϕ_k in the two-dimensional wavenumber space. The region in which $\phi_{\mathbf{k}} = 0$ is not colored The two lines that bound the zero-valued region are $l = \pm \sqrt{3}k$.

-30 0 30 60

-60

 $\phi_{\mathbf{k}}$

 if conserved, energy should accumulate in a **wedge-shaped region W** in 2D wavenumber space:

 $W = \{ (k, l) | \sqrt{3} |k| < |l| \}$

(corresponding to the blank region in upper-right figure.)

- their wavenumber vector typically deviate from the zonal by 50°- 80° (Glazman and Weichman, 2005)
- For example, for 25°N latitude, $\beta L_D^2 = 5.8$ (cm/s) and we get:

 $\gamma = \frac{\beta L_D^2}{U} \sim 5$

which satisfies the condition for anisotropy ($\gamma > 1$).

References

- P. B. Rhines, "Waves and turbulence on a beta-plane," J. Fluid Mech. 69, 417 (1975).
- A. M. Balk, "A new invariant for Rossby wave systems," Phys. Lett. A 155, 20 (1991).
- · A. M. Balk, "Angular distribution of Rossby wave energy," Phys. Lett. A 345, 154 (2005).
- · S. Nazarenko and B. Quinn, "Triple cascade behavior in quasigeostrophic and drift turbulence and generation of zonal jets," Phys. Rev. Lett. 103, 118501 (2009).
- · G. K. Vallis and M. E. Maltrud, "Generation of mean flows and jets on a beta plane and over topography," J. Phys. Oceanogr. 23, 1346 (1993)
- A. Okuno and A. Masuda, "Effect of horizontal divergence on the geostrophic turbulence on a beta-plane: Suppression of the Rhines effect," Phys. Fluids 15, 56 (2003).
- · C. Connaughton, S. Nazarenko, and B. Quinn, "Feedback of zonal flows on wave turbulence driven by small-scale instability in the Charney-Hasegawa-Mima model," Europhys. Lett. 96, 25001 (2011)
- R. E. Glazman and P. B. Weichman, "Meridional component of oceanic Rossby wave propagation," Dyn. Atmos. Oceans 38, 173 (2005).