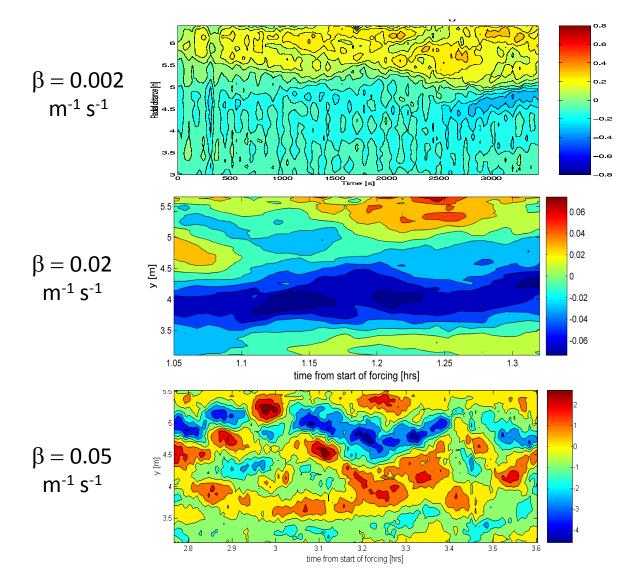
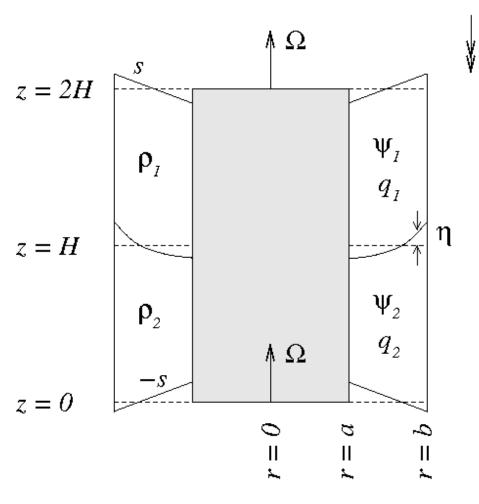
Zonal jet formation in numerical simulations of a large rotating annulus experiment

Paul Williams and Christopher Kelsall

Department of Meteorology, University of Reading, UK


p.d.williams@reading.ac.uk

1. Lab expts in a 13 meter annulus



- Jet width decreases with increasing β
- Direction alternates with radius
- Time-varying meanders transient effects?
- Wind-stress residuals?

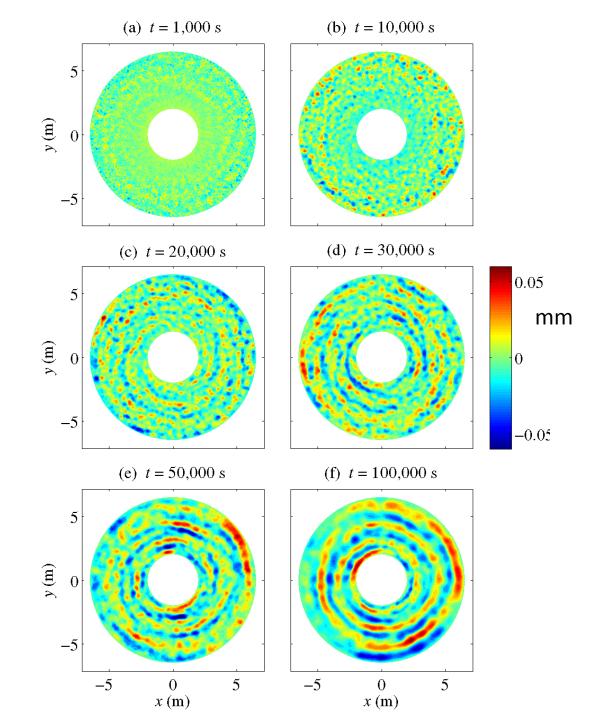
Read et al. (2004, 2007)

2. The QG numerical model

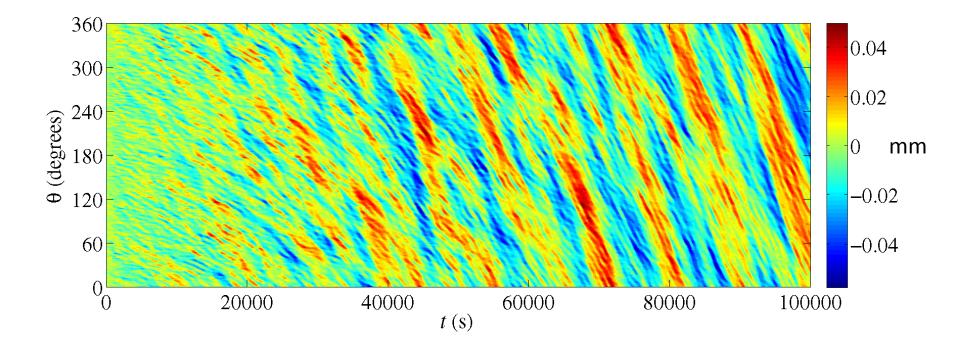
g

description	parameter	value	
inner radius	a	2.0 m	
outer radius	b	$6.5 \mathrm{~m}$	
layer height	H	$0.275~\mathrm{m}$	
average density	$\bar{ ho}$	1000.0 kg m^{-3}	
density difference	Δho	(see Table 3)	
upper boundary slope	s	0.04	
lower boundary slope	-s	-0.04	
rotation rate	Ω	$0.1571 \text{ rad s}^{-1}$	
acceleration due to gravity	g	9.81 m s^{-2}	
initial condition amplitude	q_0	(see Table 3)	

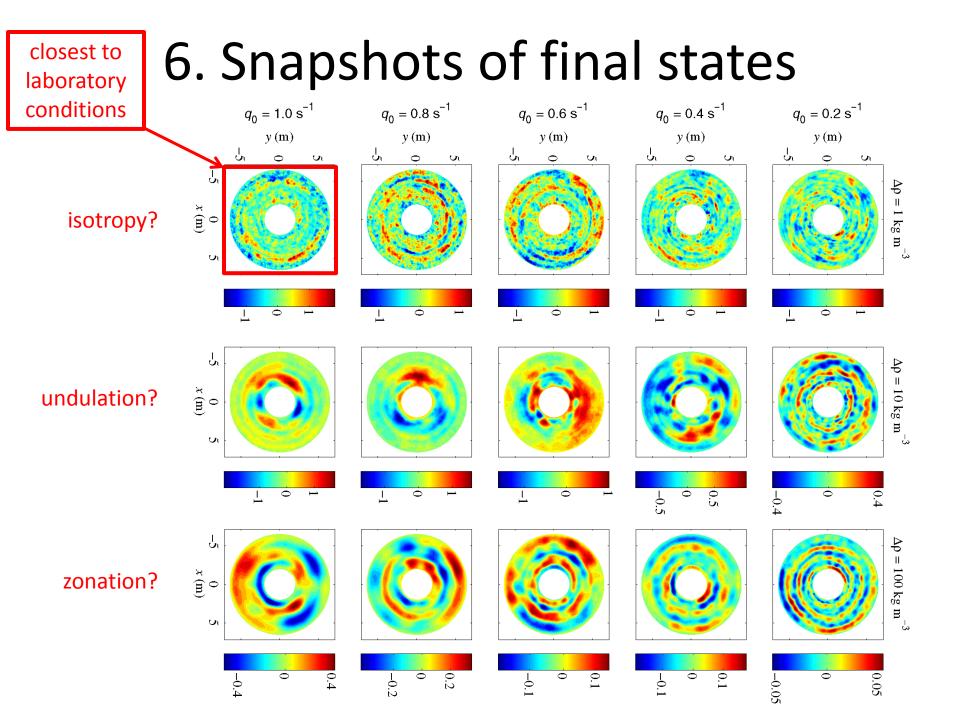
The initial condition is noise in *q* on scales 5-10 times the grid spacing

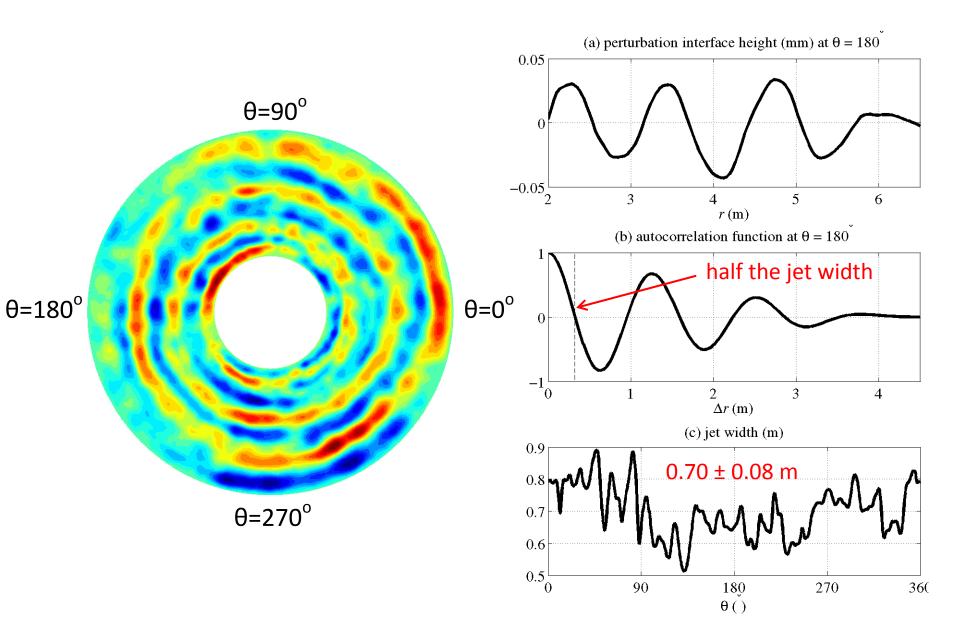

3. Suite of 15 numerical experiments

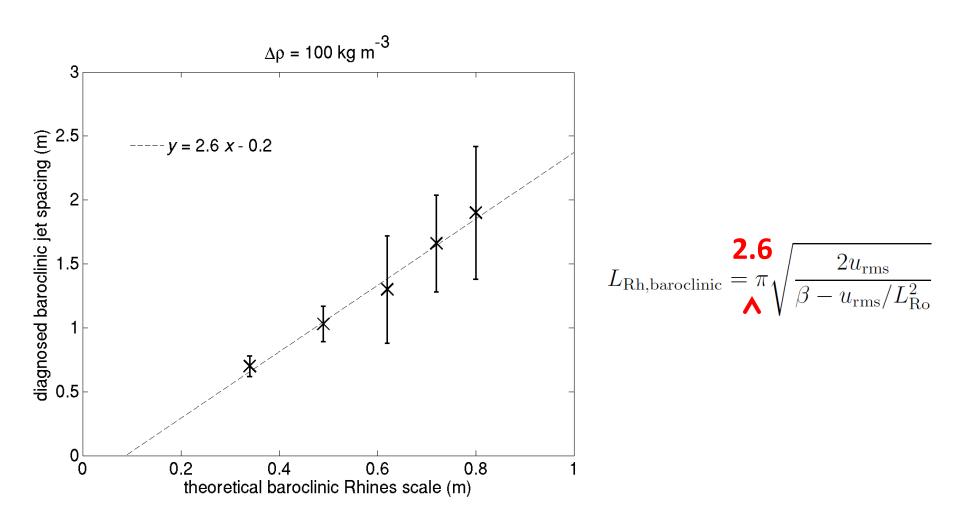
control parameters									
		↓	↓						
	experiment	Δho	q_0	Urms	baroclinic	baroclinic	jet spacing		
	number	$(\mathrm{kg} \mathrm{m}^{-3})$	(s^{-1})	$(\mathrm{mm\ s^{-1}})$	Rossby	Rhines	(m)		
					radius (m)	scale (m)			
$u_{\rm rms} > \beta L_{\rm Ro}^2$ \rightarrow isotropy?	1	1.0	0.2	0.24	0.12	0.41	0.88 ± 0.47		
	2	1.0	0.4	0.56	0.12	1.53	1.08 ± 0.68		
	3	1.0	0.6	0.83	0.12	_	_		
	4	1.0	0.8	1.17	0.12	—	_		
	5	1.0	1.0	1.42	0.12	_	_		
$u_{\rm rms} \approx \beta L_{\rm Ro}^2$ \rightarrow undulation?	6	10.0	0.2	0.25	0.37	0.34	0.90 ± 0.26		
	7	10.0	0.4	0.55	0.37	0.51	1.66 ± 0.63		
	8	10.0	0.6	0.85	0.37	0.65	1.85 ± 0.63		
	9	10.0	0.8	1.14	0.37	0.78	1.65 ± 0.62		
	10	10.0	1.0	1.45	0.37	0.90	1.76 ± 0.84		
$u_{\rm rms} < \beta L_{\rm Ro}^2$ \rightarrow zonation?	11	100.0	0.2	0.26	1.17	0.34	0.70 ± 0.08		
	12	100.0	0.4	0.56	1.17	0.49	1.03 ± 0.14		
	13	100.0	0.6	0.87	1.17	0.62	1.30 ± 0.42		
	14	100.0	0.8	1.17	1.17	0.72	1.66 ± 0.38		
	15	100.0	1.0	1.45	1.17	0.80	1.90 ± 0.52		


4. Snapshots of η

$$\eta = \frac{f}{g'}(\psi_2 - \psi_1)$$


(deviation from the parabolic equilibrium shape)


5. Hovmöller diagram of mid-radius η


→ acceleration of baroclinic Rossby waves according to: $c_{\text{baroclinic}} = \frac{\beta}{k^2 + l^2 + 1/L_{\text{Ro}}^2}$

7. Objectively diagnosing the jet width

8. Comparison with theoretical scaling

Summary

- Laboratory experiments
 - Read et al. (2004, 2007) observed zonal jet formation in a large, convectively forced rotating annulus laboratory experiment with sloping topography
 - But the jets were not very persistent and meandered significantly in time... why?
- Numerical experiments
 - We have used a quasi-geostrophic numerical model to simulate the laboratory experiments
 - Possible reasons for the jet meandering:
 - the effects of the finite baroclinic deformation radius mean the jet existence condition is only marginally satisfied
 - fully developed jets take a long time (>3-6 h) to emerge

Related manuscript submitted to Journal of the Atmospheric Sciences