Astronomy and Physics with LISA:
Opening a New Window on the Universe

Tom Prince
US LISA Mission Scientist
Caltech/JPL

http://lisa.nasa.gov
21 Oct 2004

LISA - The Overview

- **Mission Description**
 - 3 spacecraft in Earth-trailing solar orbit separated by 5×10^6 km.
 - Gravitational waves are detected by measuring changes in distance between fiducial masses in each spacecraft using laser interferometry
 - Partnership between NASA and ESA
 - Launch date ~2012+

- **Observational Targets**
 - Mergers of massive black holes
 - Inspiral of stellar-mass compact objects into massive black holes
 - Gravitational radiation from thousands of compact binary systems in our galaxy
 - Possible gravitational radiation from the early universe
This Talk:
- Characteristics of gravitational waves and gravitational wave sources
- LISA mission concept
- LISA science capabilities
- LISA status

Gravitational Waves

Two polarizations of GWs

Laser interferometer

\[h = \frac{\Delta L}{L} \]

\[P_{\text{OUT}} = P_{\text{IN}} \cos^2 (2\Delta L) \]

How big might h be for a typical LISA source?

- Use Newtonian/quadrupole approximation to Einstein Field Equations:
 $$h = \frac{\Delta L}{L} \sim \left(\frac{G}{c^4} \right) \frac{\ddot{Q}}{r}$$
 \[\ddot{Q} \text{ is the second time derivative of the source mass quadrupole} \]
 $$h \sim \frac{1}{c^2} \frac{4G(E_{\text{kin, non-sphere}}/c^2)}{r} \sim \frac{4GM_{\text{equiv}}}{rc^2}$$

- That is, h is about 4 times the dimensionless gravitational potential at Earth produced by the mass-equivalent of the source’s non-spherical, internal kinetic energy

 $$\Rightarrow h \approx 10^{-18} \text{ for } 10^6 M_\odot \text{ BH merger at } 10 \text{ Gpc}$$

 (Compare to typical 10^{-21} to 10^{-23} sensitivity of LISA)

Ground-based Gravitational Wave Detectors

- LIGO, VIRGO, GEO, TAMA ... ca. 2003
 - 4000m, 3000m, 2000m, 600m, 300m interferometers built to detect gravitational waves from compact objects
This Talk:

- Characteristics of gravitational waves and gravitational wave sources
 - LISA mission concept
- LISA science capabilities
- LISA status
Orbits

- Three spacecraft in triangular formation; separated by 5 million km
- Spacecraft have constant solar illumination
- Formation trails Earth by 20°; approximately constant arm-lengths

![Orbit Diagram]

\[1 \text{ AU} = 1.5 \times 10^8 \text{ km}\]

Determining Source Directions

- Directions (to about 1 degree): 2 methods: AM & FM
- FM: Frequency modulation due to LISA orbital doppler shifts
 - Analogous to pulsar timing over 1 year to get positions
 - FM gives best resolution for \(f > 1 \text{ mHz} \)
- AM: Amplitude modulation due to change in orientation of array with respect to source over the LISA orbit
 - AM gives best resolution for \(f < 1 \text{ mHz} \)
- Summary: LISA will have degree level angular resolution for many sources (sub-degree resolution for strong, high-frequency sources)
 - See e.g. Cutler (98), Cutler and Vecchio (98), Moore and Hellings (00), also Hughes (02)

![Source Direction Diagram]

(Cornish and Larson, ‘01)
Determining Source Distances

- Distances (to about 1%)
- Binary systems with orbital evolution (df/dt)
 - “Chirping” sources
 - Determine the luminosity distance to the system by comparing amplitude, h, and period derivative, df/dt, of the gravitational wave emission
 - Quadrupole approximation:
 $$ h \propto \frac{M_{\text{Chirp}}^{5/3}}{D_L} f^{2/3} $$
 $$ f \propto M_{\text{Chirp}}^{5/3} f^{11/3} $$
- Luminosity distance (D_L) can be estimated directly from the detected waveform
- See e.g. work by Hughes, Vecchio for quantitative estimates

Determining Polarization

- LISA has 3 arms and thus can measure both polarizations

$$ \frac{\delta (L_1 - L_2)}{L} = \frac{\sqrt{3}}{4} (H_{XX} - H_{YY}) = \frac{\sqrt{3}}{2} h_+ $$
$$ \frac{\delta (2L_2 - L_3 - L_4)}{L} = \frac{\sqrt{3}}{4} (H_{XY} - H_{YX}) = \frac{\sqrt{3}}{2} h_\times $$

- Gram-Schmidt orthogonalization of combinations that eliminate laser frequency noise yield polarization modes
 - Paper by Prince et al. (2002)
 - gr-qc/0209039

(Notation from Cutler,Phinney)
LISA Sensitivity

2-arm "Michelson" sensitivity \(\left(h = \sqrt{T_{obs}} \right) \)

- **Frequency**
 - 0.1 mHz
 - 1 Hz

(Sources include gravitational wave transfer function averaged over sky position and polarization. Source sensitivities plotted as \(h = \sqrt{T_{obs}} \).)

Spacecraft

- **Two optical assemblies**
 - Proof mass and sensors
 - 30 cm telescope
 - Interferometry: 20 pm/√Hz
 - 1 W, 1.06 μ Nd:YAG lasers

- **Drag-free control**
 - Positioning to 10 nm/√Hz
 - Attitude to 3 nrad/√Hz
LISA Interferometry

- “LISA is essentially a Michelson Interferometer in Space”
- However
 - No beam splitter
 - No end mirrors
 - Arm lengths are not equal
 (as much as 10,000 km difference)
 - Arm lengths change continuously
 (1 m/s)
 - Light travel time ~17 seconds
 - Constellation is rotating and translating in space

Time Delay Interferometry (TDI)

- Intrinsic phase noise of laser must be canceled by a factor of up to 10^9 in amplitude
- Because the arm lengths are not equal, the laser phase noise will not cancel as it does in an equal-arm Michelson
- Solution: record beat signal of each received laser beam relative to an onboard reference. Delay recorded signals relative to each other and subtract in proper (TDI) combinations.
LISA Science: Massive Black Holes

- Two primary classes of BH studies
 - Massive Black Hole Mergers
 - Merger of 2 massive BHs following galaxy merger
 - Merger of Intermediate Mass BH (IMBH) with SuperMassive BH (SMBH)
 - Extreme Mass Ratio Inspirals (EMRI)
 - Capture of stellar-mass compact object by Massive BH (e.g. 10 M_⊙x10^8 M_⊙)

- Mergers: Key Issues for detection
 - MBH mass spectrum (IMBH and SMBH)
 - Galaxy merger rates

- Capture events: Key Issues for detection
 - Rate of capture events involving massive black holes in galactic nuclei
 - LISA detection of extreme mass ratio inspiral

1) Massive Black Hole Mergers
Are Massive Black Holes Common in Galactic Nuclei?

BH Mass vrs Bulge Velocity Dispersion

\[M_\bullet (M_\odot) \]

\[\sigma \ (\text{km/s}) \]

\[10^6 \]

\[10^7 \]

\[10^8 \]

\[10^9 \]

\[50 \]

\[100 \]

\[200 \]

\[(\text{Kormendy & Gebhardt, 01}) \]

But do they merge?

Do Massive BH Binaries Merge?

\[a_{\text{hard}} = \frac{G(M_1 + M_2)}{8\alpha^2} \]

The "Final Parsec Problem"

\[a_{\text{gr}} = \left[\frac{64 G(M_1 + M_2)^2}{c^3 F(e)} \right]^{1/3} \]

(Adapted from Milosavljevic, '02)
Dr. Tom Prince, Caltech & KITP (KITP 10-21-04) The Laser Interferometer Space Antenna: Mission Concept and Capabilities.

The “Last Parsec Problem”

- power-law
- core

binary’s semi-major axis (parsec)

GALAXY MERGER
- hard binary
- super-hard binary
- re-ejection
- re-ejection
- diffusion and re-ejection are simultaneous
- non-equilibrium enhancement

black hole mass (solar mass)

COALESCENCE

(Adapted from Milosavljevic, ‘02)

Rate Estimates for Massive Black Hole Mergers

- Use hierarchical merger trees
- Rate estimates depend on several factors
 - In particular space density of MBHs with $M_{BH} < 10^6 M_\odot$
 - Depends on assumptions of formation of MBHs in lower mass structures at high-z
- Some recent estimates
 - Sesana et al. (2004): about 1 per month
 - Menou (2003): few to hundreds per year depending on assumptions
 - Haehnelt (2003): 0.1 to 100 per year depending on assumptions

Fig. 8.— Number of events per unit redshift interval resolved by LISA with $S/N > 5$ in 10^8 secs. **Solid histogram:** total number of events in 10^8 secs. **Thick-solid histogram:** total number of stationary events. These events are of much longer duration compared to the mission lifetime. **Dashed histogram:** number of bursts in 10^8 secs. These events are of short duration compared to the mission lifetime.

[Sesana et al, astro-ph/0401543]
Can LISA Detect Massive Black Holes Mergers?

LISA Capabilities for Intermediate-Mass BHs

- How did the $>10^6 M_\odot$ black holes we see today arise?
- What were the masses of the "seed" black holes?
- Do black holes exist in significant numbers in the mass range $10^2 M_\odot < M_{BH} < 10^4 M_\odot$?
- Maximum frequency scales roughly inverse to mass
- Intermediate-mass BH mergers at high redshift can be in optimal LISA sensitivity band

LISA Sensitivity (5σ)

Binary Coalescence:
- MBH-MBH
- MBH-SMBH
- SMBH-SMBH

MBH-MBH Binaries at z=1
- 1/5p SNR
- 1/5p SNR
Summary: Massive Black Hole (MBH) Mergers

- Science Measurements
 - Comparison of merger, and ringdown waveforms with predictions of numerical General Relativity
 - Number of mergers vs distance
 - Mass distribution of MBHs in merger events (masses to $\sim 10^{-4}$ accuracy)
 - Spin of MBHs

- MBH Mergers
 - Fundamental Physics
 - Precision tests of dynamical non-linear gravity
 - Astrophysics
 - What fraction of galactic merger events result in an MBH merger?
 - When were the earliest MBH mergers?
 - How do MBHs form and evolve? Seed BHs?

2) Extreme Mass Ratio Inspirals (Gravitational Capture Events)
Extreme Mass Ratio Inspiral: Key Issues

- What is the rate of compact object capture by MBH in galactic nuclei?
- How does the orbit of a compact object evolve as it spirals into a massive BH?
- What are the GW waveforms?
- Can the complex GW waveforms be detected by LISA?
- Can other backgrounds be subtracted (e.g., binary white dwarf systems)?
- How do we test GR with the $\sim 10^5$ orbits that occur during inspiral?

Significant progress on many of these issues during the last year

Estimating Waveforms

Temporal and harmonic content of approximate waveforms

[Barack and Cutler, 2003]
Extreme Mass Ratio Inspiral Detection Estimates

- Takes into account
 - MBH space density estimates
 - Monte Carlo results on capture rates scaled to range of galaxies
 - Approximate waveforms
 - Subtraction of binary background
 - Computational limits in number of templates
 - Assumes multi-Teraflop computer
 - 3 week coherent segments

- Results
 - LISA sensitivity degraded by about x2 with respect to optimal => reduction of x10 in detection rates
 - Largest rate from stellar-mass BHs captured by $\sim 10^6$ Msol MBHs
 - Predict hundreds of inspirals over LISA lifetime

<table>
<thead>
<tr>
<th>M_\bullet (Msol)</th>
<th>m</th>
<th>LISA Optimistic</th>
<th>LISA Pessimistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 000</td>
<td>0.6</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>300 000</td>
<td>10</td>
<td>739</td>
<td>89</td>
</tr>
<tr>
<td>300 000</td>
<td>100</td>
<td>1*</td>
<td>1*</td>
</tr>
<tr>
<td>1 000 000</td>
<td>0.6</td>
<td>94</td>
<td>9</td>
</tr>
<tr>
<td>1 000 000</td>
<td>10</td>
<td>1000*</td>
<td>800</td>
</tr>
<tr>
<td>1 000 000</td>
<td>100</td>
<td>1*</td>
<td>1*</td>
</tr>
<tr>
<td>3 000 000</td>
<td>0.6</td>
<td>67</td>
<td>2</td>
</tr>
<tr>
<td>3 000 000</td>
<td>10</td>
<td>1700*</td>
<td>134</td>
</tr>
<tr>
<td>3 000 000</td>
<td>100</td>
<td>2*</td>
<td>1*</td>
</tr>
</tbody>
</table>

Optimistic: 5 years/3 arms/ideal subtraction
Pessimistic: 3 years/2 arms/gClean subtraction

Summary: Extreme Mass Ratio Inspiral

- LISA signals expected to come primarily from low-mass ($\sim 10 M_\odot$) BH inspiral into massive ($\sim 10^6 M_\odot$) BH
- Potential to “map” spacetime of MBH as compact object spirals in (e.g. $\sim 10^5$ orbits available for mapping)
- Study properties of nuclear BHs and their associated star clusters
 - Masses, spins, distances, population of nuclear star clusters
- Recent progress in estimating detection rates
 - Several per month are potentially detectable by LISA
 - Barack & Cutler, gr-qc/0310125
 - LISA WG1 EMRI Task Group: Barack, Creighton, Cutler, Gaier, Larson, Phinney, Thorne, Vallisneri (December, 2003)
 - Note: Capture and tidal disruption of stars may be common
 - X-ray observations suggest significant rate of compact object capture (February 2004 news article on disruption event - RX J1242.6-1119A; Komossa et al., 2004)
3) Ultra-Compact Binaries in the Galaxy

LISA will observe distinguishable signals from \(10^4\) binary star systems in the Galaxy, a background from an even larger population of unresolved sources.
Formation Scenarios for ultra-compact binaries

- Observationally seen as LMXBs or AM CVn systems
- Evolution through common envelope phase(s), but progenitors and evolutionary paths still uncertain
- Several possible progenitors/scenarios
 - White dwarf secondary + (wd, ns, or bh)
 - Semi-degenerate He star + (wd, ns, or bh)
 - CVs with evolved donors
- Systems observed via mass transfer
 - White dwarf primary (AM CVn systems)
 - NS or BH primary (ultra-compact X-ray binary)

Mass-transfer Binaries

LISA will detect binaries with and w/o mass transfer

(From Nelemans, ’03)
Estimate of systems observable with LISA

- **Estimate from Nelemans et al**

<table>
<thead>
<tr>
<th>Change</th>
<th>Mass Xfer?</th>
<th>Resolved</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(wd,wd)</td>
<td>No</td>
<td>12163</td>
<td>560</td>
</tr>
<tr>
<td>AM CVn</td>
<td>Yes</td>
<td>10117</td>
<td>49</td>
</tr>
<tr>
<td>Compact XRB</td>
<td>Yes</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>(ns,wd)</td>
<td>No</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>(ns,ns)</td>
<td>No</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(bh,wd)</td>
<td>No</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(bh,ns)</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

() = detached

Summary: Ultra-compact Binary Studies with LISA

- LISA will observe over 10,000 individual compact binaries
 - Explore evolutionary pathways in considerable detail
 - Large sample of both detached systems & Roche-lobe filling
- LISA will observe a frequency derivative (fdot) for the few thousand highest frequency binaries
 - Get chirp masses and distances (plus period, inclination, etc.)
 - 3D obscuration-free map of galaxy (LISA will see all such sources)
 - New types of sources, e.g.
 - WDs with strong internal magnetic fields
 - WDs with tidal excitation and dissipation

LISA will allow construction of a complete 3-D map of the close binary systems in the galaxy.
Summary: LISA Capabilities for BH & Compact Binary Studies

- **Mergers of supermassive and intermediate mass BHs**
 - Expect order (10’s) of source detections
 - No distance limit for BHs with mass > $10^5 M_{\odot}$
 - Observe for typically few months

- **Extreme mass ratio inspiral**
 - Expect order (100’s) of source detections
 - Precise tests of GR over 10^5 phase-connected orbits

- **Compact binaries**
 - Expect order (10,000’s) of source detections
 - Complete 3D map of all galactic ultra-compact binaries

4) GW from the Early Universe
Gravitational Waves and the Big Bang

What Powered the Big Bang?

Gravitational Waves can Escape from Earliest Moments of the Big Bang

Big Bang plus 10^−35 seconds: Cosmic microwave background, distorted by seeds of structure and gravitational waves

Big Bang plus 10^−5 seconds: Light

Big Bang plus 300,000 years: Gravitational waves

Big Bang plus 15 billion years: Now

Diagram showing cosmological parameters and models.
Gravitational Waves from the Early Universe

- Universe became transparent to gravitational waves at very early times ($\sim 10^{-35}$ sec after the big bang)
 - Gravitational waves provide our only chance to directly observe the Universe at its earliest times
 - The cosmic microwave background (CMB) probes much later times (400,000 years after the big bang), although inflationary GW may have left a polarization imprint on the CMB
 - LISA will probe GW length and energy scales at least 15 orders of magnitude shorter and more energetic than the scales probed by CMB
 - Possibilities for relic gravitational wave emission: Non-standard inflation, phase transitions, cosmic strings?
- LISA sensitivity: $\Omega_{GW} \sim 10^{-11} - 10^{-10}$ (Vecchio, 2001)
 - Compare to "slow-roll" prediction in range $\Omega_{GW} \sim 10^{-16} - 10^{-15}$

LISA: Opening a New Window on the Universe

- LISA Status Summary:
 - Ranked by the science community as a very high-priority mission in both US and Europe
 - Started Formulation (Phase A) on October 1 as part of the "Beyond Einstein" program
 - Technology development validation flight on ESA Smart-II spacecraft in 2008
 - LISA currently planning for 2012+ launch