Nematic-driven anisotropic electronic properties of underdoped detwinned Ba $(\text{Co}_x\text{Fe}_{1-x})_2\text{As}_2$ revealed by optical spectroscopy

Leonardo Degiorgi, Laboratorium für Festkörperphysik, Department of Physics, ETH Zürich, Switzerland
Nematic Phase
Broken Rotational Symmetry in the Pseudogap Phase of Cuprates

Daou et al., Nature 463, 519 (2010)
Experimental Evidences of Nematicity in Iron-Pnictides

Chu et al., Science 329, 824 (2010)
Twin Formation in Underdoped Fe-Arsenide Superconductors

Fisher et al., Rep. Prog. Phys. 74, 124506 (2011)
Ferroelastic Tetragonal-to-Orthorhombic Transition

Pressure and Temperature Dependence of the Optical Anisotropy in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ (x=0)

Comparison of the Optical Anisotropy between $x=0$ and $x=0.045$
Saturation and Remanent Phase in the Optical Anisotropy for $x=0$, 2.5% and 4.5%
Drude Weight and Scattering Rate in Detwinned 122-Compound

Department of Physics

Leonardo Degiorgi | 9/5/14 | 11
Optical versus DC Resistivity Anisotropy in Detwinned 122-Compounds

Dichotomy between DC Transport and Optics
Optical versus DC Transport Anisotropy

\[\frac{\Delta \rho(T)}{\rho(T)} = \frac{2(\rho_b - \rho_a)}{(\rho_a + \rho_b)} \]

(a) Graph showing the relationship between temperature (T) and the ratio \(\Delta \rho/\rho\) for different pressures:
- 0 bar
- 0.4 bar
- 0.8 bar

Optical Nematic Susceptibility

Conclusions
Acknowledgements

Samples
I.R. Fisher
J.G. Analytis
J.-H. Chu
H.-H. Kuo
(Stanford University)

Theory
A. Sanna
S. Sharma
J.K. Dewhurst
E.K.U. Gross
(MPI Halle)

G. Profeta
(University of Aquila)

F. Bernardini
S. Massidda
(University of Cagliari)
Thank You for Your Attention