Many-body physics with ultracold particles in disorder

Gora Shlyapnikov
LPTMS, Orsay, France
University of Amsterdam, The Netherlands

- Introduction.
- Experiments with cold atoms in disorder
- Many-body localization-delocalization transition
- MBLDT for 1D disordered bosons
- MBLDT in the AAH model
- Conclusions

Collaborations B.L. Altshuler/I.L. Aleiner (Columbia Univ.), V. Michal (LPTMS, Orsay)
Santa Barbara, USA, November 19, 2015
Many-body system in disorder

Many-particle system in disorder \Rightarrow Transport and localization properties

Anderson localization (P.W. Anderson, 1958)
Destructive interference in the scattering of a particle from random defects

Old question. How does the interparticle interaction influence localization?
Long standing problem. Crucial for charge transport in electronic systems
 Appears in a new light for disordered ultracold bosons
What was known and expected?

What was done?

Anderson localization of

Light
Microwaves
Sound waves
Electrons in solids

What is expected?

Anderson localization of neutral atoms
Experiments with cold atoms

BEC

BEC in a harmonic + weak random potential $|V(z)| \ll ng \Rightarrow$ small density modulations of the static BEC. Switch off the harmonic trap, but keep the disorder \Rightarrow What happens? (Orsay, LENS, Rice)

Orsay experiment

Figure:

- **a)** Atom density (at/μm) vs. z (mm) for different times: 0.8 s (blue), 1.0 s (red), 2.0 s (green).
- **b)** Localization length L_{loc} (mm) vs. time t (s).

. – p.4/35
Examples from other experiments

Aspect group (Palaiseau, France)
Inguscio/Modugno group Florence, Italy)
De MArco group (Illinois, USA)
Bloch group (Munich, Germany)
Esslinger group (Zurich, Switzerland)
Hulet group (Rice, USA)
Labeyrie group (Nice, France)
Rolston group (Maryland, USA)
Schnable group (Stony Brook, USA)
Coherent backscattering. Weak localization

Palaiseau (Aspect group), Nice (Labeyrie group)
Palaiseau experiment. Quasi2D geometry
Coherent backscattering
2D disordered film

Zurich, Esslinger group

2D disordered film of Li$_2$ Feshbach molecules (large interaction). Observation of the resistance of the film versus disorder strength.
2D disordered film
3D Anderson localization of cold atoms

Urbana (De Marco group)
Palaiseau (Aspect group)
Florence (Inguscio/Modugno group)

Palaiseau experiment

\[\frac{V_R}{h} = 135 \text{ Hz} \]

\[\frac{V_R}{h} = 680 \text{ Hz} \]
3D Anderson localization of cold atoms

\[
\frac{3m\langle D \rangle}{\hbar}
\]

\[
V_R/\hbar \ (Hz)
\]

\[
\Delta y^2, \Delta z^2 \ (\mu m^2)
\]

\[
\exp \langle D_y^y \rangle, \ \text{th} \ \langle D_{y*}^y \rangle
\]

\[
\exp \langle D_z^z \rangle, \ \text{th} \ \langle D_{z*}^z \rangle
\]

\[t-t_i \ (s)\]
3D Anderson localization of cold atoms

\[f_{\text{loc}}(\%) \times n(0,0,t)/n_i(0,0) \times \exp^{-1/(t-t_i)}(\text{s}^{-1}) \]

- exp
- th

\[\tilde{n}(0,0,t)/\tilde{n_i}(0,0) \]

\[0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \]

\[0 \quad 0.5 \quad 1 \quad 1.5 \quad 2 \]

\[0 \quad 0.5 \quad 1 \quad 1.5 \quad 2 \]

\[V_R/h \text{ (Hz)} \]

\[0 \quad 200 \quad 400 \quad 600 \quad 800 \quad 1000 \]
LENS experiment. What is expected?

1D quasiperiodic potential

\[J(\psi_{n+1} + \psi_{n-1}) + V \cos(2\pi \kappa n) \psi_n = \varepsilon \psi_n \]

\[V > 2J \rightarrow \text{all single-particle states are localized} \]

Aubry/Andre (1980)
LENS experiment

Feshbach modification of the interaction for 39K

Observation of the fluid-insulator transition

![Graph showing the fluid-insulator transition](image-url)
Quantum gases in disorder. What was not expected?

One-dimensional disordered bosons at finite temperature

DOGMA → No finite temperature phase transitions in 1D as all spatial correlations decay exponentially

There is a non-conventional phase transition between two distinct states

Fluid and Insulator

Interaction-induced transition

I.L. Aleiner, B.L. Altshuler, GS, (2010)
Many-body localization-delocalization transition

(Aleiner, Altshuler, Basko 2006-2007)

How different states of two particles $|\alpha, \beta\rangle$ hybridize due to the interaction?

The probability $P(\varepsilon_\alpha)$ that for a given state $|\alpha\rangle$ there exist $|\beta\rangle$, $|\alpha'\rangle$, $|\beta'\rangle$

such that $|\alpha, \beta\rangle$ and $|\alpha', \beta'\rangle$ are in resonance:

$$\langle \alpha, \beta | H_{int} | \alpha', \beta' \rangle \text{ exceeds } \Delta_{\alpha\beta}^{\alpha'\beta'} \equiv |\varepsilon_\alpha + \varepsilon_\beta - \varepsilon_{\alpha'} - \varepsilon_{\beta'}|$$

MBLDT criterion $P(\varepsilon_\alpha) \sim 1$

$\varepsilon_\alpha \approx \varepsilon_{\alpha'}; \; \varepsilon_\beta \approx \varepsilon_{\beta'} \Rightarrow$ Matrix element $\langle \alpha, \beta | H_{int} | \alpha', \beta' \rangle = U N_\beta \frac{a}{\zeta_{\max}}$

Mismatch $\Delta_{\alpha\beta}^{\alpha'\beta'} = |\varepsilon_\alpha + \varepsilon_\beta - \varepsilon_{\alpha'} - \varepsilon_{\beta'}| \approx \left| \frac{1}{\zeta_\alpha \rho(\varepsilon_\alpha)} + \frac{1}{\zeta_\beta \rho(\varepsilon_\beta)} \right| \approx \frac{1}{(\zeta \rho)_{\min}}$
MBLDT criterion

The probability that $\langle \alpha, \beta | H_{int} | \alpha', \beta' \rangle$ exceeds $\Delta_{\alpha \beta}^{\alpha' \beta'}$

$$P_{\alpha \beta}^{\alpha' \beta'} \approx UN_{\beta} \frac{a(\zeta \rho)_{\text{min}}}{\zeta_{\text{max}}}$$

$$P(\varepsilon_{\alpha}) = \sum_{\beta, \alpha', \beta'} P_{\alpha \beta}^{\alpha' \beta'} = U \int d\varepsilon_{\beta} \rho(\varepsilon_{\beta}) \zeta_{\beta} N_{\beta} \frac{a(\zeta \rho)_{\text{min}}}{\zeta_{\text{max}}}$$

Critical coupling strength $U_c \approx \left[\int d\varepsilon_{\beta} \rho(\varepsilon_{\beta}) \zeta_{\beta} N_{\beta} \frac{a(\zeta \rho)_{\text{min}}}{\zeta_{\text{max}}} \right]^{-1}$
1D bosons

Interacting 1D Bose gas. No disorder \Rightarrow Fluid phase

QuasiBEC

Degenerate
thermal gas

Classical gas

$T = \frac{\hbar n}{m}$

$T_d \sqrt{\gamma}$

$T_d = \frac{\hbar n^2}{m}$

$\gamma = \frac{mg}{\hbar^2 n} = \frac{ng}{T_d} \ll 1 \rightarrow$ weakly interacting regime

Disordered non-interacting 1D bosons

All single-particle states are localized at any energy \rightarrow Anderson insulator
1D Bose gas in disorder

I.L. Aleiner, B.L. Altshuler, G.S., 2010

\[\rho(\varepsilon) \simeq \sqrt{\frac{m}{2\pi \hbar^2 \varepsilon}}; \quad \zeta(\varepsilon) \simeq \frac{\hbar \varepsilon}{m^{1/2} \varepsilon_*^{3/2}} \quad \varepsilon > \varepsilon_* = U_0 \left(\frac{U_0 \sigma^2 m}{\hbar^2} \right)^{1/3} \]

Classical gas \(\Rightarrow T > T_d \sim \hbar^2 n^2 / m; \quad \mu = T \ln n \Lambda_T \)

\[n g_c \sim \varepsilon_* \left(\frac{\varepsilon_*}{T} \right)^{1/2} \ll \varepsilon_* \]

Quantum decoherent gas \(\Rightarrow T_d \sqrt{\gamma} < T < T_d; \quad \mu \sim T^2 / T_d \)

\[n g_c \sim \varepsilon_* \left(\frac{\varepsilon_* T_d}{T^2} \right)^{1/2} \sim \frac{1}{T} \ll \varepsilon_* \]

QuasiBEC \(\Rightarrow T < T_d \sqrt{\gamma}; \quad n g_c \sim \varepsilon_* \)
1D Bose gas in disorder

\[T_{d\sqrt{\gamma}} \quad T_d \]

\[\varepsilon_* \quad n g_c \]

\[\text{Insulator} \quad \text{Fluid} \]

\[\text{disorder} \]
Strongly interacting bosons

\[\frac{mg}{\hbar^2 n} \gg 1 \]

Map onto weakly (attractively) interacting fermions

\[H_B = -\frac{\hbar^2}{2m} \sum_{j=1}^{N} \partial^2_{x_j} + g \sum_{1 \leq j < k \leq N} \delta(x_j - x_k) \Rightarrow \]

\[H_F = -\frac{\hbar^2}{2m} \sum_{j=1}^{N} \partial^2_{x_j} + \frac{\hbar^4}{m^2 g} \sum_{1 \leq j < k \leq N} (\partial_{x_j} - \partial_{x_k})\delta(x_j - x_k)(\partial_{x_j} - \partial_{x_k}) \]

Dimensionless coupling constant \(\lambda = -4/\gamma \)

Weak disorder \(D = \left(\frac{\epsilon^*_T}{T_d} \right)^{3/2} \ll 1 \)

\[\epsilon^*_T = \left(\frac{m \sigma^2 U_0^4}{\hbar^2} \right)^{1/3} \ll U_0 \quad T_d = \frac{\pi^2 \hbar^2 n^2}{2m} \Rightarrow E_F \]

Degenerate fermions \(\rightarrow T_c = \frac{C\delta_\zeta}{|\lambda \ln |\lambda||} \quad \delta_\zeta \approx \frac{\pi \hbar}{\tau} \)

Basko, Aleiner, Altshuler
Strongly interacting bosons

Interaction between 1D fermions renomalizes the disorder

Degenerate fermions \(T_c \approx T_d \left(\frac{D\gamma}{\ln\gamma} \right)^{\gamma/(\gamma-8)} \); \(\frac{\gamma}{\ln\gamma} \ll \frac{1}{D} \)

\(T_c \) vanishes at \(\gamma = \gamma_0 \approx 8 \)
consistent with Giamarchi/Schultz \((K = 3/2, \gamma_0 \approx 7.9) \)

\(T \gg T_d \Rightarrow \text{Single-particle picture } T_c \sim T_d (D\gamma)^{2/3} \)
1D bosons. Phase diagram

\[D \]

\[\sim \gamma \]

\[\sim \gamma^{3/2} \]

\[0 \sim \gamma^{1/2} \]

\[\sim 1 \]

\[T/T_d \]

\[a) \]

\[D \]

\[\sim 1/\gamma \]

\[0 \sim 1 \]

\[T/T_d \]

\[b) \]
1D bosons. Phase diagram

\[T/T_d \]

\[\sim 1 \]

Ins. Fluid Insulator

\[\sim D^{2/3} \quad \gamma_0 \quad \sim 1/D \]
Atoms in quasiperiodic potential. AAH model

Localization length for all eigenstates is \(\zeta = a \ln^{-1}[V/2J] \)
(Aubry/Andre, 1980); \(\zeta \simeq V a/(V - 2J) \gg a \) for \(V \) close to \(2J \)

Single-particle energy states for \(\kappa \ll 1 \) \((\kappa = \sqrt{2}/20 \text{ and } V = 2.05J) \)

Interacting bosons \(H_{int} = U \sum_j n_j(n_j - 1)/2 \)
MBLDT in the AAH model

The number of clusters $N_1 \simeq 1/\kappa$ for $\kappa \ll 1$

The width of a cluster Γ grows exponentially with energy

For $N_1 < \zeta$

$\zeta/N_1 \Rightarrow$ number of states of a given cluster participating in MBLDT

$T \ll 8J \rightarrow$ lowest energy cluster

MBLDT criterion

$$\int_0^{\Gamma_0} d\varepsilon \rho^2(\varepsilon) \zeta n_\varepsilon U_c = 1$$

Occupation number of particle states

$$n_\varepsilon = \left[\exp(\varepsilon + Un_\varepsilon/\zeta - \mu)/T - 1 \right]^{-1}$$

Chemical potential

$$\int \rho(\varepsilon)n_\varepsilon d\varepsilon = \nu$$
Critical coupling at $T = 0$

$$T = 0 \Rightarrow \varepsilon + U n_\varepsilon / \zeta(\varepsilon) = \mu$$

$$n_\varepsilon = \zeta(\mu_0 - \varepsilon) / U; \quad \varepsilon < \mu_0$$

$$n_\varepsilon = 0; \quad \varepsilon > \mu_0$$

$$U_c \nu \simeq \frac{2\Gamma_0}{\kappa \zeta}$$

Valid also at $T \ll \omega$
Critical coupling at finite temperatures

\[n_\varepsilon = \frac{\zeta}{2U} \left\{ (\mu - \varepsilon) + \sqrt{(\mu - \varepsilon)^2 + 4TU/\zeta} \right\} \text{ if } n_\varepsilon \gg 1 \]

\[n_\varepsilon = \exp\left(-\frac{\varepsilon - \mu}{T}\right) \text{ if } n_\varepsilon \lesssim 1 \quad (\varepsilon > \mu) \]

\[\frac{U_c(T)}{U_c(0)} \simeq \left[1 + \frac{T}{8\nu J} \ln \left(\frac{T}{\omega} \right) \right] ; \quad \omega \ll T \ll 8J \]

Ab initio not expected. Anomalous temperature dependence!

\[T \to \infty \quad \Rightarrow n_\varepsilon \simeq \nu; \quad \mu \simeq -T/\nu \]

\[U_c\nu \simeq \frac{\Gamma_0}{\kappa^2 \zeta} ; \quad \frac{U_c(\infty)}{U_c(0)} = \frac{1}{\kappa} \]
Critical coupling

κ close to $1/8$ and $V = 2.05J$

Increase in temperature favors the insulator state. "Freezing with heating"
Critical coupling

Golden ratio $\kappa = (\sqrt{5} - 1)/2$ and $V = 2.1J$
1D bosons is a promising system to study the many-body localization-delocalization transition

Atoms in quasiperiodic potentials \(\Rightarrow \) Increasing temperature may favor localization

Thank you for attention!
New system

Random system of polar molecules in a lattice
Levy flights and eigenstates of dipolar excitations

\[H = -\sum_{i,j} \frac{1}{|r_i - r_j|^3} (a_i^\dagger a_j + h.c.) \]

Spectrum of fractal dimensions \(f(\alpha) \)

\[I_q = \sum_i |\psi(i)|^{2q} \propto N^{-\tau(q)} \]

\[\tau(q) = q\alpha - f(\alpha); \quad f'(\alpha) = q \]
1D and 2D

In 1D and 2D all eigenstates are (algebraically) localized.

In 2D the localization length likely diverges at $E \rightarrow 0$.

\[
f(\alpha) \quad f(\alpha, N)
\]

\[k \sim 0.35\]

infinite limit

\[
f(\alpha, N)
\]
In 3D all states are extended

Transition from non-ergodic to ergodic states?

\[f(\alpha, N) \]

\[f(1+\alpha) = f(1-\alpha) + \alpha \]

\[f(\alpha) \]

infinite limit