Photon Emission from QGP

What is the emission rate $\frac{dI_y}{d^3k}$?

(Over) simplifications:

Equilibrium plasma

Very hot - $\alpha_s(T) \ll 1$

On-shell hard photon - $k \sim T$

Leading order in α_s only
(neglect $1/a_0/T$, m_q/T)

P. Arnold
G. Moore
L. Y.
Kapusta, Lichard, Seibert
& Boier, Nakagawa, Niagawa, Redlich:

\[\frac{dG}{dk} = \frac{2}{3\pi^2} \alpha_s^2 \frac{1}{k} \left[\frac{\ln T}{m_\omega} + \frac{1}{2} \ln \frac{2k}{T} + C_{2\omega_2}(k/T) \right] \]

\(m_\omega = \text{asymptotic thermal quark mass} = g_s^2 T / \sqrt{3} \)

\(\lim_{k/T \to 0} C_{2\omega_2}(k/T) = -0.361 \ldots \)

\[g \sim g T \] soft + collinear enhancements
\(\Theta \sim \Theta \] compensate extra explicit \(\alpha_s \)
\(\Theta \sim \Theta \] compensation. Extra explicit \(\alpha_s \)

virtuality \(SE = O(g_s^2 T) \Rightarrow \) photon formation time \(\Rightarrow O(g_s g T) \)

But: mean free time \(\left[\text{for } O(g_T) \text{ collisions} \right] \) is also \(O(g_s g T) \).

\[\vdots \] Multiple scattering during photon emission is important.
Leading order calculation requires complete treatment of LPM effect = interference among multiple collisions

Ex: \[\text{Re} \left(\begin{array}{c} \text{\includegraphics[width=0.2\textwidth]{diagram1}} \end{array} \right) \]

Complications:
- Frequency dependent soft scattering
- Non static scattering centers
- Non-Abelian gluon interactions
- Sensitivity to non-perturbative \[O(g^2T) \] interactions \[[AGZ] \]

Diagrammatic analysis

\[
\frac{d\Gamma_k}{\beta_k} = \frac{1}{(2\pi)^3 2k} \epsilon^\mu_k (k) \epsilon^\nu_k (k) \left< J_\mu (k) J_\nu (k) \right>
\]

\[= \sum \begin{array}{c} \text{\includegraphics[width=0.3\textwidth]{diagram2}} \end{array} \]

Detailed power counting of real time thermal diagrams

- All ladder diagrams with HTL resummed propagators contribute
- Crossed ladders, vertex corrections, ... do not contribute
- \[g \ll gT \] exchanges cancel \[g \ll gT \] self-energies

\[\text{Leading order emission rate insensitive to non-perturbative physics} \]
Sum ladders ⇒ linear integral equation

\[\frac{d\Gamma_{\mu}}{d^2k} = \frac{2}{\pi^2} \int \frac{d^2p_+}{2\pi^2} \frac{d^2p_-}{2\pi^2} n_s(p_+ + k) \left[1 - n_s(p_-) \right] \]

\[\cdot \frac{1}{(2\pi)^2} \left[\frac{1}{k^2} - \frac{1}{k^2 - m^2} \right] \]

\[2 \frac{\vec{p}_+}{\vec{p}_-} \cdot \text{Re} \left(\mathcal{F}(p_+, p_-, k) \right) \]

\[\mathcal{F}(p_+, p_-, k) = \frac{k}{2} \text{SE} \left(\mathcal{F}(p_+, p_-, k) + \frac{\vec{p}_+}{(2\pi)^2} \right) \]

\[2 \frac{\vec{p}_+}{\vec{p}_-} k \left(\frac{p_+^2 + m^2}{2p_+ (k + p_-)} \right) \approx E_{\vec{p}_+} + \frac{1}{k} k - E_{\vec{p}_-} k \]

collision kernel

\[C(p_{\perp}) = \frac{3}{2\pi} \int d^2q_{\perp} \delta(k - p_{\perp}) \left(A^+(q_{\perp}) A^-(q_{\perp}) \right) \]

soft gauge field variance

\[\left\langle A^+(q_{\perp}) A^-(q_{\perp}) \right\rangle \approx \frac{m^2 T}{8} \left\{ \frac{2}{g^2 - \frac{q^2 T^2}{T_L^2(q_{\perp})} + \frac{q^2 T^2}{T_T^2(q_{\perp})}} \right\} \]

Amazing sum rule \(C(0_{\perp}) \) ⇒

\[C(0_{\perp}) \propto \frac{1}{8_{\perp}^2} - \frac{1}{8_{\perp}^2 + m^2} \]

Solve integral egn. using variational formulation
(or convert to local Schrodinger egn in impact parameter)

Results:

\[\frac{d\Gamma_{\mu}}{d^2k} = \frac{2}{\pi^2} \alpha_s \alpha_s \frac{n_s(k)}{k} \left[\ln \frac{T}{\Lambda_{\text{QCD}}} + C_{\text{tot}} \left(\frac{k}{T} \right) \right] \]

\[C_{\text{tot}} \left(\frac{k}{T} \right) = \frac{1}{2} \ln \frac{2k}{T} + C_{\text{brem}} \left(\frac{k}{T} \right) + C_{\text{ann}} \left(\frac{k}{T} \right) \]

domain of validity:

\[k \gg m_Y = eT/\sqrt{3} \]

near collinear processes:

\(> 50\% \) of emission rate for all \(k \),
bremsstrahlung dominant for \(k \leq 2T \),
collinear annihilation dominant for \(k \geq 10T \).

LPM suppression:

\(\leq 30\% \) effect for \(2T < k < 10T \),
large effect \((\sim T^2/k) \) for \(k \leq T \),
large effect \((\sim \sqrt{k}/T) \) for \(k \geq 20T \).
Generalizations:

- Off shell photons (= dilepton rates)
- straightforward
- need to include longitudinal polarization
- numerical evaluation in progress [Geli, Narce]

Gluon emission

- straightforward generalization of analysis
- "3-way" ladders
- similar linear integral equation
Fate of a quasi-particle?

![Quasi-particle](image)

A. **Small angle (soft) scattering**
 \[g \rightarrow g \]
 mean free time \(\approx O(1/2g^2T) \)
 negligible change in momentum
 big change in color
 relevant for color conductivity, non-pert.
 \(\& \)
 irrelevant for transport of energy, flavor

B. **Large angle (hard) scattering**
 \[g \rightarrow \gamma \]
 mean free time \(\approx O(1/2g^2T) \)
 relevant for transport coefficients

C. **Near collinear fission/fusion**
 \[g \rightarrow g \]
 mean free time \(\approx O(1/2g^2T) \)
 big change in \(1/p \), negligible change in \(\hat{p} \)
 relevant for transport coefficients

Calculation of transport coefficients

- viscosity, conductivity, diffusivity

Leading order evaluation requires

- complete treatment of both
- hard + LPM suppressed near-collinear processes

\[\Rightarrow \] effective kinetic theory with

- \(1 \rightarrow 2 \) and \(2 \rightarrow 1 \) processes
- in addition to usual \(2 \leftrightarrow 2 \) scatterings.

valid for time scales \(\gamma \gg 1/2g^2T \)
(not just \(\gamma \gg 1/T \))

explicit evaluation - in progress
Typical diagram for QCD Shear at Leading Order

- Blue: Hard, On-Shell (within $g^2 T$)
- Green: Hard, Off-Shell
- Red: Soft, Spacelike, HTL re-summed
- X: New insertion

[Scalar theory analog]