a brief introduction to cosmology

what a cosmologist wants from string theory

David Wands (KITP & Portsmouth)
What a Cosmologist Wants from String Theory

Cosmology
- General relativity
- Particle physics

Initial State

Ideas Required

Observations

Final State?

The Cosmological Standard Model

Simple (+ special) initial state evolved (general relativity + particle physics) into observed distribution of matter

- Abundances of light elements (BBN)
- Anisotropies in cosmic microwave background sky (CMB)
- Line-of-sight distribution of pre-galactic hydrogen (Ly-alpha clouds)
- Abundance of galaxy clusters versus redshift
- Luminosity vs. redshift of supernovae
- Weak grav. lensing by foreground dark matter
- 3D distribution of galaxies
Standard model parameters

- Ω_k: spatial curvature
- $\langle R^2 \rangle$: scalar metric perturbations
- n_s: spectral tilt
- $\langle T^2 \rangle$: tensor metric perturbations
- τ: tensor tilt
- Ω_b: baryon density
- Ω_r: radiation density
- Ω_{cdm}: cold dark matter
- Ω_ν: neutrino density
- b: bias light / mass
- τ: optical depth to last
- H_0: present Hubble expansion
- Ω_Λ: vacuum energy density
- w_Λ: "vacuum" equation of state

Initial conditions

- Ω_k, $\langle R^2 \rangle$, n_s, $\langle T^2 \rangle$, τ, Ω_b, Ω_r, Ω_{cdm}, Ω_ν, b, τ, H_0

Particle physics

- Ω_k, $\langle R^2 \rangle$, n_s, $\langle T^2 \rangle$, τ, Ω_b, Ω_r, Ω_{cdm}, Ω_ν, b, τ, H_0

Astrophysics

- Ω_k, $\langle R^2 \rangle$, n_s, $\langle T^2 \rangle$, τ, Ω_b, Ω_r, Ω_{cdm}, Ω_ν, b, τ, H_0

"Clock" - H_0

Vacuum gravity

- Ω_Λ, w_Λ, "vacuum" equation of state
initial state

- (3+1) - dimensional spacetime
 statistically
 almost homogeneous & isotropic
 (perturbed FLRW spacetime)
- almost spatially flat ("ζ = 1")
- expanding \((H > 0)\)
- almost scale-invariant spectrum
 of Gaussian metric perturbations
 \((δg ∼ 10^{-5})\)

inflation in early universe

* constant vacuum energy
 de Sitter attractor (for \(H > 0\))
 - homogeneous & isotropic
 - \(Ω_k \rightarrow 0\) as \(t \rightarrow \infty\)

* slowly-rolling scalar fields
 almost constant vacuum energy
 - light fields \((m^2 ≪ H^2)\) acquire
 scale-invariant spectrum of perturbations
 - vacuum energy → radiation
 at reheating after inflation
 - scalar field perturbations
 → density perturbations
large-scale structure from scalar fields

small scale \((k \gg aH) \)
quantum vacuum
under-damped oscillator

small scale, \((k \ll aH) \)
large scale
perturbations
over-damped

\[\delta x \propto e^{-i k \eta} \]
\[\langle \delta x^2 \rangle_{k=ah} \approx \left(\frac{H}{2 \pi} \right)^2 \]

scalar metric perturbation
during inflation after inflation

\[R = \frac{H \delta \phi}{\dot{\phi}} \]
\[\rightarrow \]
\[R = \frac{H \delta \phi}{\dot{\phi}} \]
\[\text{inflaton, } \phi \]
\[\text{density, } \rho \]

isocurvature field perturbations
\[S_{ij} = H \left(\frac{\delta \phi_i}{\phi_i} - \frac{\delta \phi_j}{\phi_j} \right) \]
\[\rightarrow \]
\[S_{\phi} = H \left(\frac{\delta \phi_x}{\dot{\phi}_x} - \frac{\delta \phi_y}{\dot{\phi}_y} \right) \]
\[\text{"entropy" perturbations.} \]
stochastic inflation

- Starobinsky, Linde, Vilenkin...

classical evolution dominated by quantum fluctuations

- "self-reproducing"
- inhomogeneous
- future eternal

Problems?

- non-linear gravitational back-reaction of quantum fluctuations
- past incomplete geodesics Vilenkin, Borde, Guth
- problem of measure

pre big bang

Gravitational instability of vacuum

\[\rightarrow \text{cosmological collapse (similarities with inflation!)} \]

\[\rightarrow \text{locally homogeneous attractor} \]

\[\rightarrow \text{quantum vacuum} \]

\[\rightarrow \text{large-scale perturbations} \]

Problems?

- approaches cosmological singularity
- does not (in general) produce scale-invariant perturbations (probably need "entropy" perturbations)
Q: what happens at a cosmological singularity?

big bang, big crunch, big rip...

- higher order string/loop corrections to avoid singularity?
- non-perturbative dual description that is non-singular?

Q: does time begin?

- e.g. quantum cosmology + no boundary proposal?
- or eternal stochastic inflation?
- or pre-big bang phase?
- or eternal cyclic model?
Q: What is quantum vacuum for gravitational fields?

- 2-point function for trans-Plankian fields in curved spacetime

- 3-point function for self-gravitating fields (non-Gaussianity of primordial perturbation spectra)

Q: is there a future asymptotic vacuum state?

- does $\Lambda \to 0$? ($\to M_+$)
- $\Lambda > 0$? ($\to dS_+$)
- $\Lambda < 0$? recollapse

Kallosh, Linde, et al

- why does present vacuum weigh so little? Dvali et al
Q:

why are there (only?)
3 large spatial dimensions?

- are hidden dimensions
 compact / infinite ?
 universal / gravitational ?.

- what is the topology
 of space ?. and time ?.

summary:

cosmology

successful standard model
seeks deep meaningful connection
with string theory
five questions:

1. what happens at a cosmological singularity?
2. does time begin?
3. what is the quantum vacuum for gravitational fields?
4. is there a future asymptotic vacuum state?
5. why only 3 large/visible spatial dimensions?