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» Three Topics:

(I) Exact phoretic interaction of two chemically-active particles (with Babak Nasourt)
(IT) Active phase separation in chemically active systems (with Jaime Agudo-Canalejo)

(ITI) Cooperatively enhanced reactivity and “stabilitaxis’ of dissociating oligomeric
proteins (with Jaime Agudo-Canalejo and Pierre Illien)



Exact phoretic interaction ot two
chemically-active particles

B. Nasouri & R. Golestanian, arXiv:2001.07576



Chemically-active particles

passive active

= If \/R <« 1, surface activity can be captured by local slip
velocity ( v°)



Activity and Mobility

Chemical Activity (C¥):

= Characterizes how it produces or
consumes chemicals

Chemical Mobility ( [ ):

R . = Characterizes how it responds to a

chemical gradient




The continuum framework
Overdamped regime:
* No fluid inertia (zero Reynolds number)

* No chemical advection (zero Peclet number)

Single particle:
= Purely isotropic concentration gradient

= No propulsion




Pair interactions
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M1
Chemical Hydrodynamic
interactions: interactions:
Diffusion Equation Stokes Equations

L Slip Velocities J



Pair interactions
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‘Far-field’ solution

a2
M2

Assumptions:

= Large gap sizes (A/R > 1)
" No hydrodynamic interactions
" No near-field chemical interactions

R2€ _R2€
Q2 b VQ — 5
D (A + 2R)

a1 U2

R. Soto & R. Golestanian (2014)
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AB, ABz2, ABs, ..., Abn



Tabulating Acttve Molecules

Translational propulsion z

o &C &
Rotational propulsion f.‘ &8 ‘.&‘

Inert molecules 0’

3D Structure determines Function, /ke proteins

R. Soto & R. Golestanian (2014)



Dynamic Function: Run & Tumble

T—isomer
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‘Far-field’ solution — Relative motion

e (o1 + aips)
D (A v 2R)2 211 1142 N

42
Regime I: Attraction aap1 + ajpus <0

Vrel —

Regime II: Repulsion agp + ajpuz >0

» What happens when the particles are close?
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Chemical interaction — Exact approach
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spherical coordinate system —Dny-VCls, = as




Hydrodynamic interaction — Exact approach
nVv = Vp T
Vov—0 —>

. Expensive to solve!
el P
CQ 'U|32:V2—|—

Lorentz Reciprocal Theorem

= Using the reciprocal theorem, we don’t need to '

solve the Stokes equations directly
FL. A. Lorentz (1853-1928)

" We only need to know the full solution to two auxiliary

problems: v v v, V.



Exact Solution

Chemical interactions:

C(x) = a1Gi(z — 1) + a2G2(T — x2) G1 =05
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F{) = F{ = Hydrodynamic forces on the particles in the trailing problem

FV = —F}" = Hydrodynamic forces on the particles in the approaching problem



Exact solution — Relative motion
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» Emergence of two new regimes, with stable and
unstable fixed-points



Exact solution — Relative motion
Regime III: Stable fixed-point

Regime IV: Unstable fixed-point




My Movie 1

iMovie




My Movie 1

iMovie




What 1s different?

Far-field solution:

R’e
Vre — Q 4+ «
1 D(A+2R)2 (capi1 1/42)
Exact solution:
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Exact chemical/no hydrodynamic:
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Why 1s it happening?
Fe

Vrel _ (11) |

[(aop1 + agpz) + e [A] (Qrpr + aspz)]

\ﬁr—/\\/—/

Far—ﬁeld effect Near—ﬁeld effect

» Near-field effect is captured by a self-generated

+.

neighbour-reflected term



Similar to a Janus particle near wall
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Where in parameter spacer

= Far-field = FExact chemical/no ® Full solution
hydrodynamic
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Fixed-point variation

" In regime III and IV, the fixed-point tends to zero or
infinity upon reaching the regime boundaries
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HEscape & collapse time

" First-passage time: time needed to break apart a complex formed in
regime 1V in the presence of noise

6 15,

H

=

d L

4 0 s

—6 g /lpe| 6 3 T

" Collapse time: comparing the collapse time in regime I, using the exact

and far-field approach
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» Remarks

" Near-field effects can qualitatively change the behaviour of
the system

" Due to near-field effects, a fixed-point may emerge in the
dynamical system which can be stable (Regime III) or unstable

(Regime IV)

" In the absence of hydrodynamic interactions, near-field
chemical interactions can still capture the new regimes

" Near-field effects are due to a self-generated neighbour-
reflected term

"  QOutlook: near-field effects in many-body interactions...
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