

MAX-PLANCK-GESELLSCHAFT

Recent developments in chemically active matter I

Ramin Golestanian Max Planck Institute for Dynamics and Self-Organization, Göttingen & Department of Physics, University of Oxford

• Three Topics:

(I) Exact phoretic interaction of two chemically-active particles (with Babak Nasouri)
(II) Active phase separation in chemically active systems (with Jaime Agudo-Canalejo)
(III) Cooperatively enhanced reactivity and `stabilitaxis' of dissociating oligomeric proteins (with Jaime Agudo-Canalejo and Pierre Illien)

Exact phoretic interaction of two chemically-active particles

B. Nasouri & R. Golestanian, arXiv:2001.07576

Chemically-active particles

passive

active

• If $\lambda/R \ll 1$, surface activity can be captured by local slip velocity ($v^{\rm s}$)

Activity and Mobility

Chemical Activity (α):

 Characterizes how it produces or consumes chemicals

Chemical Mobility (μ):

Characterizes how it responds to a chemical gradient

The continuum framework

Overdamped regime:

- No fluid inertia (zero Reynolds number)
- No chemical advection (zero Pèclet number)

Single particle:

- Purely isotropic concentration gradient
- No propulsion

$$oldsymbol{V}=oldsymbol{0}$$

interactions:

Hydrodynamic interactions:

Diffusion Equation

Stokes Equations

Chemical interactions:

$$\nabla^2 C = 0$$

$$\eta \nabla^2 \boldsymbol{v} = \boldsymbol{\nabla} p$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{v} = 0$$

$$ec{\mathbf{v}} egin{smallmatrix} \mathbf{v}|_{\mathcal{S}_1} = \mathbf{V}_1 + \mathbf{v}_1^{\mathrm{s}} \ \mathbf{v}|_{\mathcal{S}_2} = \mathbf{V}_2 + \mathbf{v}_2^{\mathrm{s}} \end{cases}$$

$$\boldsymbol{v}_{1}^{s} = \mu_{1} \left(\boldsymbol{I} - \boldsymbol{n}_{1} \boldsymbol{n}_{1} \right) \cdot \boldsymbol{\nabla} C$$
$$\boldsymbol{v}_{2}^{s} = \mu_{2} \left(\boldsymbol{I} - \boldsymbol{n}_{2} \boldsymbol{n}_{2} \right) \cdot \boldsymbol{\nabla} C$$

Assumptions:

- Large gap sizes $(\Delta/R \gg 1)$
- No hydrodynamic interactions
- No near-field chemical interactions

$$\boldsymbol{V}_{1} = \frac{R^{2}\boldsymbol{e}}{D\left(\Delta + 2R\right)^{2}}\alpha_{2}\mu_{1} \qquad \boldsymbol{V}_{2} = \frac{-R^{2}\boldsymbol{e}}{D\left(\Delta + 2R\right)^{2}}\alpha_{1}\mu_{2}$$

AB, AB2, AB3, ... , ABn

Tabulating Active Molecules

3D Structure determines Function, like proteins

R. Soto & R. Golestanian (2014)

Dynamic Function: Run & Tumble

Regime II: Repulsion $\alpha_2\mu_1 + \alpha_1\mu_2 > 0$

What happens when the particles are close?

• Can be solved exactly using bispherical coordinate system

$$\nabla^{2}C = 0$$

$$: \bigcup_{i=1}^{n_{i}} \begin{cases} -D\boldsymbol{n}_{1} \cdot \boldsymbol{\nabla}C|_{\mathcal{S}_{1}} = \alpha_{1} \\ -D\boldsymbol{n}_{2} \cdot \boldsymbol{\nabla}C|_{\mathcal{S}_{2}} = \alpha_{2} \end{cases}$$

Hydrodynamic interaction – Exact approach

$$\eta \nabla^2 \boldsymbol{v} = \boldsymbol{\nabla} p \longrightarrow \nabla^4 \psi = 0$$

 $\nabla \cdot \boldsymbol{v} = 0 \longrightarrow \nabla^4 \psi = 0$
 $\bigcup_{i=1}^{\infty} \begin{cases} \boldsymbol{v}|_{S_1} = \boldsymbol{V}_1 + \boldsymbol{v}_1^s \\ \boldsymbol{v}|_{S_2} = \boldsymbol{V}_2 + \boldsymbol{v}_2^s \end{cases}$ Expensive to solve!

Lorentz Reciprocal Theorem

 Using the reciprocal theorem, we don't need to solve the Stokes equations directly

H. A. Lorentz (1853-1928)

We only need to know the full solution to two auxiliary problems:

Exact Solution

Chemical interactions:

$$C(\boldsymbol{x}) = \alpha_1 \mathcal{G}_1(\boldsymbol{x} - \boldsymbol{x}_1) + \alpha_2 \mathcal{G}_2(\boldsymbol{x} - \boldsymbol{x}_2) \qquad \qquad \mathcal{G}_1 = \mathcal{G}_2^*$$

$$\boldsymbol{v}_{k}^{\mathrm{s}} = \mu_{k} \alpha_{k} \boldsymbol{\nabla}_{\parallel}^{k} \mathcal{G}_{k}(R\boldsymbol{n}_{k}) + \mu_{k} \alpha_{l} \boldsymbol{\nabla}_{\parallel}^{k} \mathcal{G}_{l}(R\boldsymbol{n}_{k} + \boldsymbol{x}_{k} - \boldsymbol{x}_{l})$$

 $F_1^{(i)} = F_2^{(i)}$ = Hydrodynamic forces on the particles in the trailing problem $F_1^{(ii)} = -F_2^{(ii)}$ = Hydrodynamic forces on the particles in the approaching problem

Emergence of two new regimes, with stable and unstable fixed-points

Exact solution – Relative motion Regime III: Stable fixed-point

Regime IV: Unstable fixed-point

What is different?

Far-field solution:

$$\boldsymbol{V}_{\text{rel}} = \frac{R^2 \boldsymbol{e}}{D \left(\Delta + 2R\right)^2} \left(\alpha_2 \mu_1 + \alpha_1 \mu_2\right)$$

Exact solution:

$$\boldsymbol{V}_{\text{rel}} = \frac{\mathcal{F}\boldsymbol{e}}{|\boldsymbol{F}_{1}^{(\text{ii})}|} \left[(\alpha_{2}\mu_{1} + \alpha_{1}\mu_{2}) + \varepsilon \left[\Delta \right] (\alpha_{1}\mu_{1} + \alpha_{2}\mu_{2}) \right]$$

Exact chemical/no hydrodynamic:

$$\boldsymbol{V}_{\rm rel} = \frac{\mathcal{F}_{\rm ch}\boldsymbol{e}}{4\pi R^2} \left[(\alpha_2 \mu_1 + \alpha_1 \mu_2) + \varepsilon_{\rm ch} \left[\Delta \right] (\alpha_1 \mu_1 + \alpha_2 \mu_2) \right]$$

Near-field effect is captured by a self-generated neighbour-reflected term

Similar to a Janus particle near wall

Where in parameter space?

Fixed-point variation

 In regime III and IV, the fixed-point tends to zero or infinity upon reaching the regime boundaries

Escape & collapse time

• *First-passage time*: time needed to break apart a complex formed in regime IV in the presence of noise

• *Collapse time*: comparing the collapse time in regime I, using the exact and far-field approach

- Near-field effects can qualitatively change the behaviour of the system
- Due to near-field effects, a fixed-point may emerge in the dynamical system which can be stable (Regime III) or unstable (Regime IV)
- In the absence of hydrodynamic interactions, near-field chemical interactions can still capture the new regimes
- Near-field effects are due to a self-generated neighbourreflected term
- Outlook: near-field effects in many-body interactions...