Self-organization of bacterial mixtures using motility regulation

J. Tailleur

Laboratoire MSC CNRS - Université Paris Diderot

PARIS DIDEROT

active20@KITP

[A. I. Curatolo, N. Zhou, Y. Zhao, C. Liu, A. Daerr, J. Tailleur, J.-D. Huang, BioRxiV:798827, Nat. Phys. in Press.]

Active matter

Drive at the microscopic level -> Strongly out of equilibrium -> Fundamentally new physics

• Biological relevance

• Explore new dynamical phenomenology

Active matter

Clusters without attractive interactions

[van der Linden, PRL 2019]

Solitonic waves [Bricard , Nature 2013]

Filaments [Thutupalli, PNAS 2018]

- Biological relevance
- Active Soft Materials

- Explore new dynamical phenomenology
- Build generic framework for Active Matter

$$m\dot{v} = -V'_{\rm ext}(x) - \gamma v + \sqrt{2\gamma kT}\eta$$

• Colloid in a fluid at equilibrium:

$$m\dot{v} = -V'_{\text{ext}}(x) - \gamma v + \sqrt{2\gamma kT}\eta$$

• Colloid in a fluid at equilibrium:

 \longrightarrow Dissipation: mean (drag) force from the fluid $\propto \gamma$

$$m\dot{v} = -V'_{\rm ext}(x) - \gamma v + \sqrt{2\gamma kT}\eta$$

• Colloid in a fluid at equilibrium: Fluctuation-Dissipation theorem $D = kT/\gamma$

 \longrightarrow Dissipation: mean (drag) force from the fluid $\propto \gamma$

 \rightarrow Injection of energy: fluctuating force from the fluid $\propto \gamma kT$

$$m\dot{v} = -V'_{\rm ext}(x) - \gamma v + \sqrt{2\gamma kT}\eta$$

• Active matter:

 \longrightarrow Dissipation: mean (drag) force from the fluid $\propto \gamma$

 \rightarrow Injection of energy: fluctuating force from the fluid $\propto \gamma kT$

$$m\dot{v} = -V'_{\text{ext}}(x) - \gamma v + \sqrt{2\gamma kT}\eta + f_p \mathbf{u}(\theta)$$

- Active matter:
 - \rightarrow Dissipation: mean (drag) force from the fluid $\propto \gamma$
 - \rightarrow Injection of energy: fluctuating force from the fluid $\propto \gamma kT$
 - \longrightarrow Injection of energy: self-propulsion force $f_p \mathbf{u}(\theta)$

$$m\dot{v} = -V'_{\text{ext}}(x) - \gamma v + \sqrt{2\gamma kT}\eta + f_p \mathbf{u}(\theta)$$

- - \rightarrow Dissipation: mean (drag) force from the fluid $\propto \gamma$
 - \rightarrow Injection of energy: fluctuating force from the fluid $\propto \gamma kT$
 - \longrightarrow Injection of energy: self-propulsion force $f_p \mathbf{u}(\theta)$

$$0 = m\dot{v} = -V'_{\rm ext}(x) - \gamma v + \tilde{\eta}$$

 \longrightarrow Dissipation: mean (drag) force from the fluid $\propto \gamma$

- \rightarrow Injection of energy: fluctuating force from the fluid $\propto \gamma kT$
- \longrightarrow Injection of energy: self-propulsion force $f_p \mathbf{u}(\theta)$

$$0 = m\dot{v} = -V'_{\rm ext}(x) - \gamma v + \tilde{\eta}$$

Active matter:
—> No FDT: system driven out of equilibrium

 \longrightarrow Dissipation: mean (drag) force from the fluid $\propto \gamma$

 \rightarrow Injection of energy: fluctuating force from the fluid $\propto \gamma kT$

 \longrightarrow Injection of energy: self-propulsion force $f_p \mathbf{u}(\theta)$

Passive vs active dynamics

 $\dot{\mathbf{r}} = -\nabla V(\mathbf{r}) + \sqrt{2D}\boldsymbol{\eta}$

Gaussian white noise η

Equilibrium Stat. Mech.

 $\dot{\mathbf{r}} = -\nabla V(\mathbf{r}) + \boldsymbol{v_p}$

Non-Gaussian persistent noise v_p

No working theory

Passive vs active dynamics

 $\dot{\mathbf{r}} = -\nabla V(\mathbf{r}) + \sqrt{2D}\boldsymbol{\eta}$

Gaussian white noise η

Equilibrium Stat. Mech.

 $\dot{\mathbf{r}} = -\nabla V(\mathbf{r}) + \boldsymbol{v_p}$

Non-Gaussian persistent noise v_p

No working theory

z

Passive vs active dynamics

Rather frustrating situation: what can be saved from (near-) equilibrium methods?

Outside the limit in which v_p amounts to a Gaussian white noise

Self-organization in & out of equilibrium

• Thermal Equilibrium

-> Time-reversal symmetry in steady-state

-> Boltzman weight: guides our intuition

Self-organization in & out of equilibrium

• Thermal Equilibrium

- -> Time-reversal symmetry in steady-state
- → Boltzman weight: guides our intuition
- Example: Liquid-gas phase transition
 - → Passive Brownian particles with attractive interactions
 - -> Entropy vs Energy : disorder vs cohesion
 - \rightarrow Lowering T: transition from gas to liquid (with coexistence)

Self-organization in & out of equilibrium

• Thermal Equilibrium

- -> Time-reversal symmetry in steady-state
- → Boltzman weight: guides our intuition
- Example: Liquid-gas phase transition
 - -> Passive Brownian particles with attractive interactions
 - -> Entropy vs Energy : disorder vs cohesion
 - \rightarrow Lowering T: transition from gas to liquid (with coexistence)
- Outside equilibrium
 - → No generic formula for steady-state distribution
 - → Little basis upon which to build intuition
 - -> Few guiding principles for self-assembly

A statistical-mechanics framework for Active Matter

A statistical-mechanics framework for Active Matter

• How to go from micro to macro ?

A statistical-mechanics framework for Active Matter

Run-and-tumble bacteria [Berg & Brown, Nature, 1972]

- Run: straight line (velocity $v \simeq 20 \, \mu m.s^{-1}$)
- Tumble: new direction (rate $\alpha \simeq 1 \, {\rm s}^{-1}$, duration $\tau \simeq 0.1 s$)

Run-and-tumble bacteria [Berg & Brown, Nature, 1972]

- Run: straight line (velocity $v \simeq 20 \,\mu m.s^{-1}$)
- Tumble: new direction (rate $\alpha \simeq 1 \, {\rm s}^{-1}$, duration $\tau \simeq 0.1 s$)

• E.g. Janus colloids with asymmetric coating

• E.g. Janus colloids with asymmetric coating

• Self [diffusio-] phoresis

Pt

• E.g. Janus colloids with asymmetric coating

Active Brownian Particles: continuous rotational diffusion

$$\dot{\mathbf{r}}(t) = v\mathbf{u}(\theta) + \sqrt{2D_t}\boldsymbol{\eta}; \qquad \dot{\theta}(t) = \sqrt{2D_r}\xi$$

$$v \simeq 1\mu . s^{-1};$$
 $D_t \simeq .3\mu^2 . s^{-1};$ $D_{\text{eff}} \simeq 1 - 4\mu^2 . s^{-1}$

Pt

Pt

 H_2O_2

Pt

Ιv

• E.g. Janus colloids with asymmetric coating

• Self [diffusio-] phoresis

Active Brownian Particles: continuous rotational diffusion

$$\dot{\mathbf{r}}(t) = v\mathbf{u}(\theta) + \sqrt{2D_t}\boldsymbol{\eta}; \qquad \dot{\theta}(t) = \sqrt{2D_r}\xi$$

$$v \simeq 1\mu . s^{-1};$$
 $D_t \simeq .3\mu^2 . s^{-1};$ $D_{\text{eff}} \simeq 1 - 4\mu^2 . s^{-1}$

- Many other types of self-propelled colloids...
- Light-controlled [Palacci et al. Science 339, 936 (2013)] •

Motility-control as a self-organization principle

- Self-propelled particles with propelling speed v
- Diverse reorientation mechanisms (ABPs, RTPs, AOUPs, etc.)
- Generic: properties of $v \longrightarrow$ Control steady states

Motility-control as a self-organization principle

- Self-propelled particles with propelling speed v
- Diverse reorientation mechanisms (ABPs, RTPs, AOUPs, etc.)
- Generic: properties of $v \longrightarrow$ Control steady states
 - I. Non-interacting particles with spatially varying speed $v(\mathbf{r})$
- II. Quorum-sensing: density-dependent speed $v(\rho)$
- III. Application to bacterial pattern formation
- IV. Multi-component systems

Position-dependent self-propulsion speed $v(\mathbf{r})$

• Master-equation for the probability density $P(\mathbf{r}, \theta)$

$$\partial_t P(\mathbf{r}, \theta; t) = -\nabla \cdot [v(\mathbf{r})\mathbf{u}(\theta)P(\mathbf{r}, \theta)] + \Theta P$$

• ΘP : Randomization of orientation

$$\Theta_{ABP}P = D_r \Delta_{\theta} P(\mathbf{r}, \theta); \qquad \Theta_{RTP}P = -\alpha P(r, \theta) + \int d\theta' \frac{\alpha}{2\pi} P(\mathbf{r}, \theta')$$

Position-dependent self-propulsion speed $v(\mathbf{r})$

• Master-equation for the probability density $P(\mathbf{r}, \theta)$

$$\partial_t P(\mathbf{r}, \theta; t) = -\nabla \cdot [v(\mathbf{r})\mathbf{u}(\theta)P(\mathbf{r}, \theta)] + \Theta P$$

• ΘP : Randomization of orientation

$$\Theta_{ABP}P = D_r \Delta_{\theta} P(\mathbf{r}, \theta); \qquad \Theta_{RTP}P = -\alpha P(r, \theta) + \int d\theta' \frac{\alpha}{2\pi} P(\mathbf{r}, \theta')$$

- Any isotropic function: $\Theta f(\mathbf{r}) = 0 \longrightarrow P_{\text{stat}}(\mathbf{r}) \propto \frac{1}{v(\mathbf{r})}$ (up to normalization issues)
- SPPs spend more time where they go slower [Schnitzer 1993 PRE, JT & Cates PRL 2008, EPL 2013]

Position-dependent self-propulsion speed $v(\mathbf{r})$

• Master-equation for the probability density $P(\mathbf{r}, \theta)$

$$\partial_t P(\mathbf{r}, \theta; t) = -\nabla \cdot [v(\mathbf{r})\mathbf{u}(\theta)P(\mathbf{r}, \theta)] + \Theta P$$

• ΘP : Randomization of orientation

$$\Theta_{ABP}P = D_r \Delta_{\theta} P(\mathbf{r}, \theta); \qquad \Theta_{RTP}P = -\alpha P(r, \theta) + \int d\theta' \frac{\alpha}{2\pi} P(\mathbf{r}, \theta')$$

- Any isotropic function: $\Theta f(\mathbf{r}) = 0 \longrightarrow P_{\text{stat}}(\mathbf{r}) \propto \frac{1}{v(\mathbf{r})}$ (up to normalization issues)
- SPPs spend more time where they go slower [Schnitzer 1993 PRE, JT & Cates PRL 2008, EPL 2013]
- (A bit of) translational diffusion only changes this quantitatively

$$P_{\text{stat}} \propto \frac{1}{\sqrt{D+v^2\tau}}; \qquad \tau^{-1} = d(d-1)D_r + d\alpha$$

Experiments with bacteria

- Flagellar rotor can be controlled using light (proteorhodopsin)
- Quantitative check that $ho({f r}) \propto rac{1}{v({f r})}$ [Arlt et al., arxiv:1902.10083]

Experiments with bacteria

- Flagellar rotor can be controlled using light (proteorhodopsin)
- Quantitative check that $ho({f r}) \propto rac{1}{v({f r})}$ [Arlt et al., arxiv:1902.10083]
- Painting with bacteria (and light modulation)

[Vizsnyiczai et al., Nat. Com. (2017)]

[Arlt et al., Nat. Com. (2018)]

Experiments with bacteria

- Flagellar rotor can be controlled using light (proteorhodopsin)
- Quantitative check that $ho({f r}) \propto rac{1}{v({f r})}$ [Arlt et al., arxiv:1902.10083]
- Painting with bacteria (and light modulation)

[Vizsnyiczai et al., Nat. Com. (2017)]

[Arlt et al., Nat. Com. (2018)]

• Accumulation can be triggered by $v(\mathbf{r}), \alpha(\mathbf{r}), \beta(\mathbf{r}) \longrightarrow$ Many ways of slowing down

J. Tailleur (CNRS-Univ Paris Diderot)

Interactions: Quorum-Sensing

• Motility requires energy source —> Interactions with the environment (food, fuel source, etc.)

Interactions: Quorum-Sensing

- Motility requires energy source —> Interactions with the environment (food, fuel source, etc.)
- Local competition between particles
- Mobility depends on local density of active particles
Interactions: Quorum-Sensing

- Motility requires energy source
 Interactions with the environment (food, fuel source, etc.)
- Local competition between particles
- Mobility depends on local density of active particles
- Simplest of model: Local in time, quasi-local in space [JT, Cates, PRL 2008]

$$\dot{\mathbf{r}}_i = v[\tilde{\rho}(\mathbf{r}_i)]\mathbf{u}(\theta_i); \qquad \dot{\theta}_i = [...]$$

• Particles measure an effective density $\tilde{\rho}(r)$

$$\rho(\mathbf{r}') = \sum_{i} \delta(\mathbf{r}' - \mathbf{r}_{i})$$

Interactions: Quorum-Sensing

- Motility requires energy source
 Interactions with the environment (food, fuel source, etc.)
- Local competition between particles
- Mobility depends on local density of active particles
- Simplest of model: Local in time, quasi-local in space [JT, Cates, PRL 2008]

$$\dot{\mathbf{r}}_i = v[\tilde{\rho}(\mathbf{r}_i)]\mathbf{u}(\theta_i); \qquad \dot{\theta}_i = [...]$$

• Particles measure an effective density $\tilde{\rho}(r)$

$$ilde{
ho}(\mathbf{r}) = \int d\mathbf{r}' K(\mathbf{r}-\mathbf{r}')
ho(\mathbf{r}')$$

$$\rho(\mathbf{r}') = \sum_{i} \delta(\mathbf{r}' - \mathbf{r}_i)$$

• In reality, much more complex (taxis, time-delay, etc.)

Engineering quorum-Sensing [Bauerle et al Nat Com 2019]

- Janus colloids in water-lutidine mixture with $T \leq T_c$ [Volpe et al, Soft Mat. 2011]

Engineering quorum-Sensing [Bauerle et al Nat Com 2019]

• Janus colloids in water-lutidine mixture with $T \leq T_c$ [Volpe et al, Soft Mat. 2011]

- $v(\tilde{\rho})$ through feedback mechanism

Engineering quorum-Sensing [Bauerle et al Nat Com 2019]

- Janus colloids in water-lutidine mixture with $T \leq T_c$ [Volpe et al, Soft Mat. 2011]

- $v(\tilde{\rho})$ through feedback mechanism

• Can we understand this using our simple model?

Quorum-sensing in sillico

• Consider RTPs and ABPs with QS interactions: $\dot{\mathbf{r}}_i = v[\tilde{\rho}(\mathbf{r}_i)]\mathbf{u}(\theta_i); \quad \dot{\theta}_i = [...]$ [JT & M. Cates; PRL 2008, EPL 2013; Solon *et al.* EPJST 2015, PRE 2016, NJP 2018]

Quorum-sensing in sillico

• Consider RTPs and ABPs with QS interactions: $\dot{\mathbf{r}}_i = v[\hat{\rho}(\mathbf{r}_i)]\mathbf{u}(\theta_i); \quad \dot{\theta}_i = [...]$ IJT & M. Cates: PRL 2008. EPL 2013: Solon *et al.* EPJST 2015. PRE 2016. NJP 2018]

• Non-uniform speed $v(\mathbf{r})$

 $\dot{P}(\mathbf{r},\theta) = -\nabla_{\mathbf{r}} \cdot [v(\mathbf{r})P(r,\theta)\mathbf{u}(\theta)] + D_{\mathrm{r}}\partial_{\theta}^{2}P(\mathbf{r},\theta)$

• Stationnary distribution $P(\mathbf{r}, \theta) = \frac{\kappa}{v(\mathbf{r})}$ [Schnitzer PRE 1993, JT & Cates PRL 2008]

• Non-uniform speed $v(\mathbf{r})$

 $\dot{P}(\mathbf{r},\theta) = -\nabla_{\mathbf{r}} \cdot [v(\mathbf{r})P(r,\theta)\mathbf{u}(\theta)] + D_{\mathbf{r}}\partial_{\theta}^{2}P(\mathbf{r},\theta)$

- Stationnary distribution $P(\mathbf{r}, \theta) = \frac{\kappa}{v(\mathbf{r})}$ [Schnitzer PRE 1993, JT & Cates PRL 2008]
- Repulsive Interactions $v'(\rho) < 0$

$$\dot{P}(\mathbf{r},\theta) = -\nabla_{\mathbf{r}} \cdot [v(\mathbf{r})P(r,\theta)\mathbf{u}(\theta)] + D_{\mathbf{r}}\partial_{\theta}^{2}P(\mathbf{r},\theta)$$

- Stationnary distribution $P(\mathbf{r}, \theta) = \frac{\kappa}{v(\mathbf{r})}$ [Schnitzer PRE 1993, JT & Cates PRL 2008]
- Repulsive Interactions $v'(\rho) < 0$ \longrightarrow Feedback loop

$$\dot{P}(\mathbf{r},\theta) = -\nabla_{\mathbf{r}} \cdot [v(\mathbf{r})P(r,\theta)\mathbf{u}(\theta)] + D_{\mathbf{r}}\partial_{\theta}^{2}P(\mathbf{r},\theta)$$

- Stationnary distribution $P(\mathbf{r}, \theta) = \frac{\kappa}{v(\mathbf{r})}$ [Schnitzer PRE 1993, JT & Cates PRL 2008]
- Repulsive Interactions $v'(\rho) < 0 \longrightarrow$ Feedback loop

$$\dot{P}(\mathbf{r},\theta) = -\nabla_{\mathbf{r}} \cdot [v(\mathbf{r})P(r,\theta)\mathbf{u}(\theta)] + D_{\mathbf{r}}\partial_{\theta}^{2}P(\mathbf{r},\theta)$$

- Stationnary distribution $P(\mathbf{r}, \theta) = \frac{\kappa}{v(\mathbf{r})}$ [Schnitzer PRE 1993, JT & Cates PRL 2008]
- Repulsive Interactions $v'(\rho) < 0 \longrightarrow$ Feedback loop

$$\dot{P}(\mathbf{r},\theta) = -\nabla_{\mathbf{r}} \cdot [v(\mathbf{r})P(r,\theta)\mathbf{u}(\theta)] + D_{\mathbf{r}}\partial_{\theta}^{2}P(\mathbf{r},\theta)$$

- Stationnary distribution $P(\mathbf{r}, \theta) = \frac{\kappa}{v(\mathbf{r})}$ [Schnitzer PRE 1993, JT & Cates PRL 2008]
- Repulsive Interactions $v'(\rho) < 0 \longrightarrow$ Feedback loop

$$\dot{P}(\mathbf{r},\theta) = -\nabla_{\mathbf{r}} \cdot [v(\mathbf{r})P(r,\theta)\mathbf{u}(\theta)] + D_{\mathbf{r}}\partial_{\theta}^{2}P(\mathbf{r},\theta)$$

- Stationnary distribution $P(\mathbf{r}, \theta) = \frac{\kappa}{v(\mathbf{r})}$ [Schnitzer PRE 1993, JT & Cates PRL 2008]
- Repulsive Interactions $v'(\rho) < 0 \longrightarrow$ Feedback loop

$$\dot{P}(\mathbf{r},\theta) = -\nabla_{\mathbf{r}} \cdot [v(\mathbf{r})P(r,\theta)\mathbf{u}(\theta)] + D_{\mathbf{r}}\partial_{\theta}^{2}P(\mathbf{r},\theta)$$

- Stationnary distribution $P(\mathbf{r}, \theta) = \frac{\kappa}{v(\mathbf{r})}$ [Schnitzer PRE 1993, JT & Cates PRL 2008]
- Repulsive Interactions $v'(\rho) < 0 \longrightarrow$ Feedback loop

$$\dot{P}(\mathbf{r},\theta) = -\nabla_{\mathbf{r}} \cdot [v(\mathbf{r})P(r,\theta)\mathbf{u}(\theta)] + D_{\mathbf{r}}\partial_{\theta}^{2}P(\mathbf{r},\theta)$$

- Stationnary distribution $P(\mathbf{r}, \theta) = \frac{\kappa}{v(\mathbf{r})}$ [Schnitzer PRE 1993, JT & Cates PRL 2008]
- Repulsive Interactions $v'(\rho) < 0 \longrightarrow$ Feedback loop

$$\rho_{0} + \delta\rho = \frac{\kappa}{v(\rho_{0})} + \delta\rho$$

$$v(\rho_{0}) + v'(\rho_{0})\delta\rho$$

$$v(\rho_{0}) + v'(\rho_{0})\delta\rho$$

$$x$$

• Non-uniform speed $v(\mathbf{r})$

$$\dot{P}(\mathbf{r},\theta) = -\nabla_{\mathbf{r}} \cdot [v(\mathbf{r})P(r,\theta)\mathbf{u}(\theta)] + D_{\mathbf{r}}\partial_{\theta}^{2}P(\mathbf{r},\theta)$$

- Stationnary distribution $P(\mathbf{r}, \theta) = \frac{\kappa}{v(\mathbf{r})}$ [Schnitzer PRE 1993, JT & Cates PRL 2008]
- Repulsive Interactions $v'(\rho) < 0 \longrightarrow$ Feedback loop

$$\rho_{0} + \delta\rho = \frac{\kappa}{v(\rho_{0})} + \delta\rho$$

$$v(\rho_{0}) + v'(\rho_{0})\delta\rho$$

$$v(\rho_{0}) + v'(\rho_{0})\delta\rho$$

$$v(\rho_{0}) + v'(\rho_{0})\delta\rho$$

• Linear instab. if $1 \leq -\rho_0 \frac{v'(\rho_0)}{v(\rho_0)}$

• Non-uniform speed $v(\mathbf{r})$

$$\dot{P}(\mathbf{r},\theta) = -\nabla_{\mathbf{r}} \cdot [v(\mathbf{r})P(r,\theta)\mathbf{u}(\theta)] + D_{\mathbf{r}}\partial_{\theta}^{2}P(\mathbf{r},\theta)$$

- Stationnary distribution $P(\mathbf{r}, \theta) = \frac{\kappa}{v(\mathbf{r})}$ [Schnitzer PRE 1993, JT & Cates PRL 2008]
- Repulsive Interactions $v'(\rho) < 0 \longrightarrow$ Feedback loop

$$\rho_{0} + \delta\rho = \frac{\kappa}{v(\rho_{0})} + \delta\rho \int_{v(\rho_{0})+v'(\rho_{0})\delta\rho} \simeq \frac{\kappa}{v(\rho_{0})+v'(\rho_{0})\delta\rho} \simeq \frac{\kappa}{v(\rho_{0})} \left(1 - \frac{v'(\rho_{0})\delta\rho}{v(\rho_{0})}\right) = \rho_{0} - \frac{\rho_{0}v'}{v}\delta\rho$$

$$v(\rho_{0}) + v'(\rho_{0})\delta\rho \int_{v(\rho_{0})+v'(\rho_{0})\delta\rho} \simeq \frac{\kappa}{v(\rho_{0})} \left(1 - \frac{v'(\rho_{0})\delta\rho}{v(\rho_{0})}\right) = \rho_{0} - \frac{\rho_{0}v'}{v}\delta\rho$$

• Linear instab. if $1 \le -\rho_0 \frac{v'(\rho_0)}{v(\rho_0)} \longrightarrow$ Motility-induced phase-separation [Cates, JT Ann. Rev. Cond. Mat. Phys. 2015]

• How can we characterize this phase separation?

• Large-scale dynamics of phase-separating scalar systems away from criticality

 $\dot{\rho} = -\nabla \cdot J[\rho]$ where $J[\rho] = -M[\rho] \nabla \frac{\delta F}{\delta \rho}$

• Free energy: $\mathcal{F} = \int dx [f(\rho(x)) + \frac{\kappa(\rho)}{2} (\nabla \rho)^2] + \dots$

• Large-scale dynamics of phase-separating scalar systems away from criticality

 $\dot{\rho} = -\nabla \cdot J[\rho]$ where $J[\rho] = -M[\rho] \nabla \frac{\delta \mathcal{F}}{\delta \rho}$

- Free energy: $\mathcal{F} = \int dx [f(\rho(x)) + \frac{\kappa(\rho)}{2} (\nabla \rho)^2] + \dots$
- Most probable profiles \longleftrightarrow Minimize $\mathcal{F}[\rho]$ with $\int d\mathbf{r}\rho(\mathbf{r}) = V\rho_0$

• Large-scale dynamics of phase-separating scalar systems away from criticality

 $\dot{\rho} = -\nabla \cdot J[\rho]$ where $J[\rho] = -M[\rho] \nabla \frac{\delta \mathcal{F}}{\delta \rho}$

- Free energy: $\mathcal{F} = \int dx [f(\rho(x)) + \frac{\kappa(\rho)}{2} (\nabla \rho)^2] + \dots$
- Most probable profiles \longleftrightarrow Minimize $\mathcal{F}[\rho]$ with $\int d\mathbf{r}\rho(\mathbf{r}) = V\rho_0$
- Phase-separated profiles:

• Large-scale dynamics of phase-separating scalar systems away from criticality

 $\dot{\rho} = -\nabla \cdot J[\rho]$ where $J[\rho] = -M[\rho] \nabla \frac{\delta \mathcal{F}}{\delta \rho}$

- Free energy: $\mathcal{F} = \int dx [f(\rho(x)) + \frac{\kappa(\rho)}{2} (\nabla \rho)^2] + \dots$
- Most probable profiles \longleftrightarrow Minimize $\mathcal{F}[\rho]$ with $\int d\mathbf{r}\rho(\mathbf{r}) = V\rho_0$
- Phase-separated profiles: Common tangent construction on $f(\rho_0)$

Large-scale dynamics of phase-separating scalar systems away from criticality

 $\dot{\rho} = -\nabla \cdot J[\rho]$ where $J[\rho] = -M[\rho] \nabla \frac{\delta \mathcal{F}}{\delta \rho}$

- Free energy: $\mathcal{F} = \int dx [f(\rho(x)) + \frac{\kappa(\rho)}{2} (\nabla \rho)^2] + \dots$
- Most probable profiles \longleftrightarrow Minimize $\mathcal{F}[\rho]$ with $\int d\mathbf{r}\rho(\mathbf{r}) = V\rho_0$
- Phase-separated profiles: Common tangent construction on $f(\rho_0)$

• $F \simeq V \rho_0$ and $\rho_0 = \frac{N}{V}$ \longrightarrow Chemical potential $\mu = \frac{\partial F}{\partial N} = f'(\rho_0)$ and Pressure $p = -\frac{\partial F}{\partial V} = \rho f'(\rho) - f(\rho)$

- $\dot{\mathbf{r}_i} = \mathbf{v}[\tilde{\rho}(\mathbf{r_i})]\mathbf{u}(\theta_i); \quad \tilde{\rho}(\mathbf{r_i}) = \sum_j K(|\mathbf{r_i} \mathbf{r_j}|); \quad \sigma^2 = \int dr K(r) r^2$
- Rotational diffusivity D_r , tumbling rate α

- $\dot{\mathbf{r}_i} = \boldsymbol{v}[\tilde{\rho}(\mathbf{r_i})]\mathbf{u}(\theta_i); \quad \tilde{\rho}(\mathbf{r_i}) = \sum_j K(|\mathbf{r_i} \mathbf{r_j}|); \quad \sigma^2 = \int dr K(r)r^2$
- Rotational diffusivity D_r , tumbling rate α
- Assume $\tilde{\rho}(\mathbf{r})$ frozen \longrightarrow Non-interacting $v(r_i) \longrightarrow$ Determine $\partial_t \rho(\mathbf{r}, t)$

- $\dot{\mathbf{r}_i} = \boldsymbol{v}[\tilde{\rho}(\mathbf{r_i})]\mathbf{u}(\theta_i); \quad \tilde{\rho}(\mathbf{r_i}) = \sum_j K(|\mathbf{r_i} \mathbf{r_j}|); \quad \sigma^2 = \int dr K(r)r^2$
- Rotational diffusivity D_r , tumbling rate α
- Assume $\tilde{\rho}(\mathbf{r})$ frozen \longrightarrow Non-interacting $v(r_i) \longrightarrow$ Determine $\partial_t \rho(\mathbf{r}, t)$

$$\dot{\rho} = \nabla \cdot \left\{ \qquad \qquad \right\};$$

•
$$\dot{\mathbf{r}}_{\mathbf{i}} = \boldsymbol{v}[\tilde{\rho}(\mathbf{r}_{\mathbf{i}})]\mathbf{u}(\theta_i); \quad \tilde{\rho}(\mathbf{r}_{\mathbf{i}}) = \sum_j K(|\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}|); \quad \sigma^2 = \int dr K(r)r^2$$

- Rotational diffusivity D_r, tumbling rate α
- Assume $\tilde{\rho}(\mathbf{r})$ frozen \longrightarrow Non-interacting $v(r_i) \longrightarrow$ Determine $\partial_t \rho(\mathbf{r}, t)$

$$\dot{
ho} =
abla \cdot \left\{ M \nabla \left[rac{\delta \mathcal{F}}{\delta
ho}
ight.
ight.
ight. \left. \left. \begin{array}{l} M =
ho rac{v^2}{D_r d(d-1) + lpha d}
ight.
ight.$$

• $\mathcal{F}[\rho(x)] = \int d^d r \Big[\rho(\log \rho - 1) + \int^{\rho} ds \log[v(s)] \Big] \equiv \int d^d r f(\rho(r))$

•
$$\dot{\mathbf{r}}_{\mathbf{i}} = \boldsymbol{v}[\tilde{\rho}(\mathbf{r}_{\mathbf{i}})]\mathbf{u}(\theta_i); \quad \tilde{\rho}(\mathbf{r}_{\mathbf{i}}) = \sum_j K(|\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}|); \quad \sigma^2 = \int dr K(r)r^2$$

- Rotational diffusivity D_r, tumbling rate α
- Assume $\tilde{\rho}(\mathbf{r})$ frozen \longrightarrow Non-interacting $v(r_i) \longrightarrow$ Determine $\partial_t \rho(\mathbf{r}, t)$

$$\dot{\rho} = \nabla \cdot \left\{ M \nabla \left[\frac{\delta \mathcal{F}}{\delta \rho} + \sigma^2 \frac{v'}{v} \Delta \rho \right] \right\}; \qquad M = \rho \frac{v^2}{D_r d(d-1) + \alpha d}$$

- $\mathcal{F}[\rho(x)] = \int \mathrm{d}^d r \Big[\rho(\log \rho 1) + \int^{\rho} \mathrm{d}s \log[v(s)] \Big] \equiv \int \mathrm{d}^d r f(\rho(r))$
- $\sigma^2 \frac{v'}{v} \Delta \rho$ does not derive from a free energy

•
$$\dot{\mathbf{r}}_{\mathbf{i}} = \boldsymbol{v}[\tilde{\rho}(\mathbf{r}_{\mathbf{i}})]\mathbf{u}(\theta_i); \quad \tilde{\rho}(\mathbf{r}_{\mathbf{i}}) = \sum_j K(|\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}|); \quad \sigma^2 = \int dr K(r)r^2$$

- Rotational diffusivity D_r, tumbling rate α
- Assume $\tilde{\rho}(\mathbf{r})$ frozen \longrightarrow Non-interacting $v(r_i) \longrightarrow$ Determine $\partial_t \rho(\mathbf{r}, t)$

$$\dot{\rho} = \nabla \cdot \left\{ M \nabla \left[\frac{\delta \mathcal{F}}{\delta \rho} + \sigma^2 \frac{v'}{v} \Delta \rho \right] \right\}; \qquad M = \rho \frac{v^2}{D_r d(d-1) + \alpha d}$$

- $\mathcal{F}[\rho(x)] = \int \mathrm{d}^d r \Big[\rho(\log \rho 1) + \int^{\rho} \mathrm{d}s \log[v(s)] \Big] \equiv \int \mathrm{d}^d r f(\rho(r))$
- $\sigma^2 \frac{v'}{v} \Delta \rho$ does not derive from a free energy

Common-tangent on $f(\rho)$ leads to a wrong phase diagram [Wittkowski *et al.* Nat. Com. 5, 4351 (2014)]

$$\dot{\rho} = \nabla \cdot [M \nabla g(\rho)]; \qquad g = g_0(\rho) - \kappa(\rho) \Delta \rho$$
$$g_0 = \log[\rho v(\rho)], \qquad \kappa(\rho) = -\sigma^2 \frac{v'(\rho)}{v(\rho)}$$

$$\dot{\rho} = \nabla \cdot [M \nabla g(\rho)]; \qquad g = g_0(\rho) - \kappa(\rho) \Delta \rho$$

$$g_0 = \log[\rho v(\rho)], \qquad \kappa(\rho) = -\sigma^2 \frac{v'(\rho)}{v(\rho)}$$

Unfortunately $g(\rho) \neq \frac{\delta \mathcal{F}[\rho]}{\delta \rho}$ \bigcirc

 $\dot{\rho} = \nabla \cdot [M \nabla g(\rho)]; \qquad g = g_0(\rho) - \kappa(\rho) \Delta \rho$ $g_0 = \log[\rho v(\rho)], \qquad \kappa(\rho) = -\sigma^2 \frac{v'(\rho)}{v(\rho)}$

Unfortunately $g(\rho) \neq \frac{\delta \mathcal{F}[\rho]}{\delta \rho}$ (:)

A bit of magic: define $R'(\rho) \equiv \frac{1}{\kappa(\rho)}$ and $\phi'(R) = g_0(\rho)$

A bit of magic: define $R'(\rho) \equiv \frac{1}{\kappa(\rho)}$ and $\phi'(R) = g_0(\rho)$

Then
$$\dot{\rho} = \nabla \left[M \nabla \frac{\delta \mathcal{H}}{\delta R(\rho)} \right]$$
 with $\mathcal{H} = \int d\mathbf{r} [\phi(\mathbf{R}) + \frac{\kappa}{2R'} (\nabla R)^2]$

Ve

A bit of magic: define $R'(\rho)\equiv rac{1}{\kappa(\rho)}$ and $\phi'(R)=g_0(\rho)$

Then
$$\dot{\rho} = \nabla \Big[M \nabla \frac{\delta \mathcal{H}}{\delta R(\rho)} \Big]$$
 with $\mathcal{H} = \int d\mathbf{r} [\phi(R) + \frac{\kappa}{2R'} (\nabla R)^2]$

Common-tangent construction on the effective free energy density $\phi(R)$

Ve

A bit of magic: define $R'(\rho) \equiv \frac{1}{\kappa(\rho)}$ and $\phi'(R) = g_0(\rho)$

Then
$$\dot{\rho} = \nabla \Big[M \nabla \frac{\delta \mathcal{H}}{\delta R(\rho)} \Big]$$
 with $\mathcal{H} = \int d\mathbf{r} [\phi(R) + \frac{\kappa}{2R'} (\nabla R)^2]$

Common-tangent construction on the effective free energy density $\phi(R)$

Be wise, discretize !

• Lattice-gas model of run & tumble particles (RTP)

[Thompson et al. JSTAT 2011; Soto & Golestanian PRE 2014; Whitelam JCP 2018]

Be wise, discretize !

• Lattice-gas model of run & tumble particles (RTP)

[Thompson et al. JSTAT 2011; Soto & Golestanian PRE 2014; Whitelam JCP 2018]

• Exclusion: $d_i^{\pm} = v_0(1 - \frac{n_{i\pm 1}}{n_M})$

• Lattice of αL sites with at most one particle per site

• Lattice of αL sites with at most one particle per site

• Symmetric diffusion/exchange at rate D

- Symmetric diffusion/exchange at rate D
- Asymmetric hopping on empty sites at rate λ/L

• Lattice of αL sites with at most one particle per site

- Symmetric diffusion/exchange at rate D
- Asymmetric hopping on empty sites at rate λ/L
- Particles switch hopping direction at rate Γ/L^2

• Lattice of αL sites with at most one particle per site

- Symmetric diffusion/exchange at rate D
- Asymmetric hopping on empty sites at rate λ/L
- Particles switch hopping direction at rate Γ/L^2
- Undergoes MIPS if $\rho_0 = N/L^d$ and λ are large enough

Phase equilibrium

• Exact hydrodynamic equations for density and magnetisation

 $x = \frac{i}{L}, t = \frac{t_{\text{micro}}}{L^2}$ [M. Kourbane-Houssene *et al*, PRL (2018); C. Érignoux, arXiv:1608.04937]

$$\begin{aligned} \partial_t \rho(x,t) &= D\Delta \rho + \lambda \nabla [m(1-\rho)] \\ \partial_t m(x,t) &= D\Delta m + \lambda \nabla [\rho(1-\rho)] - 2\Gamma m \end{aligned}$$

Phase equilibrium

• Exact hydrodynamic equations for density and magnetisation

 $x = \frac{i}{L}$, $t = \frac{t_{\text{micro}}}{L^2}$ [M. Kourbane-Houssene *et al*, PRL (2018); C. Érignoux, arXiv:1608.04937]

$$\begin{aligned} \partial_t \rho(x,t) &= D\Delta \rho + \lambda \nabla [m(1-\rho)] \\ \partial_t m(x,t) &= D\Delta m + \lambda \nabla [\rho(1-\rho)] - 2\Gamma m \end{aligned}$$

• More complicated but can still be solved using the same transform

• Exact, parameter-free result

MIPS from repulsive forces

Self-propelled particles with pairwise forces (PFAPs)

[Fily & Marchetti PRL 2012, Redner et al. PRL 2013, Stenhammar et al. PRL 2013, Bialké et al. PRL 2013, ...]

$$\dot{\mathbf{r}}_{\mathbf{i}} = v\mathbf{u}(\theta_i) - \mu \sum_j F_{ij}(\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}) + \sqrt{2D_t}\eta_i; \qquad \dot{\theta}_i = \sqrt{2D_r}\xi_i$$

• Interactions yields decreasing $v(\rho) \equiv \sum_i \dot{\mathbf{r}}_i \cdot \mathbf{u}(\theta_i)$ [Fily et al PRL (2012)]

MIPS from repulsive forces

• Self-propelled particles with pairwise forces (PFAPs)

[Fily & Marchetti PRL 2012, Redner et al. PRL 2013, Stenhammar et al. PRL 2013, Bialké et al. PRL 2013, ...]

$$\dot{\mathbf{r_i}} = v \mathbf{u}(\theta_i) - \mu \sum_j F_{ij}(\mathbf{r_i} - \mathbf{r_j}) + \sqrt{2D_t} \eta_i; \qquad \dot{\theta_i} = \sqrt{2D_r} \xi_i$$

• Interactions yields decreasing $v(\rho) \equiv \sum_i \dot{\mathbf{r}}_i \cdot \mathbf{u}(\theta_i)$ [Fily et al PRL (2012)]

• Interesting qualitative & quantitative differences [Tjhung et al, PRX 2018; Caporusso et al, arxiv:2005.06893]

• Hydrodynamic description [Solon et al., PRE 2016, NJP 2018]

 $\dot{
ho}(\mathbf{r}) = -
abla \cdot \mathbf{J}$ where $\mathbf{J} = \mu
abla \cdot \boldsymbol{\sigma};$ $\boldsymbol{\sigma} = [$ Bunch of bulk correlators]

• Hydrodynamic description [Solon et al., PRE 2016, NJP 2018]

 $\dot{
ho}(\mathbf{r}) = -\nabla \cdot \mathbf{J}$ where $\mathbf{J} = \mu \nabla \cdot \boldsymbol{\sigma};$ $\boldsymbol{\sigma} = [Bunch of bulk correlators]$

• $P_{\text{tot}} = -\sigma_{xx}$ is the equation of state of the mechanical pressure [Takatori *et al.* PRL 2014; Yang *et al.* Soft. Mat. 2014; Solon *et al.* PRL 2015]

• Hydrodynamic description [Solon et al., PRE 2016, NJP 2018]

 $\dot{
ho}(\mathbf{r}) = -\nabla \cdot \mathbf{J}$ where $\mathbf{J} = \mu \nabla \cdot \boldsymbol{\sigma};$ $\boldsymbol{\sigma} = [Bunch of bulk correlators]$

• $P_{\text{tot}} = -\sigma_{xx}$ is the equation of state of the mechanical pressure [Takatori *et al.* PRL 2014; Yang *et al.* Soft. Mat. 2014; Solon *et al.* PRL 2015]

$$P(\rho) = P_D + P_A \quad \text{where} \quad P_A = \rho \frac{v_0 v(\rho)}{2\mu D_r}; \quad v(\rho) = \langle \sum_i \dot{\mathbf{r}}_i \cdot \mathbf{u}(\theta_i) \rangle$$

- *P_D* passive pressure: mean force exerted through a plane
- Pa flux of active impulse & momentum through a plane [Fily et al. JPA (2018)]

• Hydrodynamic description [Solon et al., PRE 2016, NJP 2018]

 $\dot{
ho}(\mathbf{r}) = -\nabla \cdot \mathbf{J}$ where $\mathbf{J} = \mu \nabla \cdot \boldsymbol{\sigma};$ $\boldsymbol{\sigma} = [Bunch of bulk correlators]$

• $P_{\text{tot}} = -\sigma_{xx}$ is the equation of state of the mechanical pressure [Takatori *et al.* PRL 2014; Yang *et al.* Soft. Mat. 2014; Solon *et al.* PRL 2015]

$$P(\rho) = P_D + P_A \quad \text{where} \quad P_A = \rho \frac{v_0 v(\rho)}{2\mu D_r}; \quad v(\rho) = \langle \sum_i \dot{\mathbf{r}}_i \cdot \mathbf{u}(\theta_i) \rangle$$

- *P_D* passive pressure: mean force exerted through a plane
- Pa flux of active impulse & momentum through a plane [Fily et al. JPA (2018)]
- $P'(\rho) < 0$ predicts linear instability

Pairwise forces—Summary

Phase diagram in quantitative agreement with generalized thermodynamical construction

- Equal mechanical pressure in coexisting phases
- Can do isobaric ensemble
- Failure of Maxwell construction
- Quite rich physics still to be explored (surface tension, bubbles, etc.)

Back to bacteria: Motility-Induced Pattern Formation (MIPF)

Back to bacteria: Motility-Induced Pattern Formation (MIPF)

Back to bacteria: Motility-Induced Pattern Formation (MIPF)

Patterns instead of MIPS [Liu et al., Science (2011)]. Nice, but why ?

J. Tailleur (CNRS-Univ Paris Diderot)

- Particle slow down at high density (slower, more tumbles, longer tumbles ...)
- Instability mechanism: feedback loop [Cates, Tailleur, Ann. Rev. of Cond. Mat. Phys. 2015]
 - -> Bacteria accumulate where they are less motile
 - -> Bacteria lose motility at high density

- Particle slow down at high density (slower, more tumbles, longer tumbles ...)
- Instability mechanism: feedback loop [Cates, Tailleur, Ann. Rev. of Cond. Mat. Phys. 2015]
 - Bacteria accumulate where they are less motile
 - Bacteria lose motility at high density
 - Microscopic simulations starting from homogeneous systems

$$t = 10^3 \tau$$
 $t = 10^4 \tau$ $t = 10^5 \tau$

- Particle slow down at high density (slower, more tumbles, longer tumbles ...)
- Instability mechanism: feedback loop [Cates, Tailleur, Ann. Rev. of Cond. Mat. Phys. 2015]
 - Bacteria accumulate where they are less motile
 - Bacteria lose motility at high density
 - → Microscopic simulations starting from homogeneous systems

$$t = 10^3 \tau$$
 $t = 10^4 \tau$ $t = 10^5 \tau$

 $\beta'(\rho)<0$

100 $v_0 \tau$

- Particle slow down at high density (slower, more tumbles, longer tumbles ...)
- Instability mechanism: feedback loop [Cates, Tailleur, Ann. Rev. of Cond. Mat. Phys. 2015]
 - Bacteria accumulate where they are less motile
 - Bacteria lose motility at high density
 - → Microscopic simulations starting from homogeneous systems

$$t = 10^3 \tau$$
 $t = 10^4 \tau$ $t = 10^5 \tau$

 $\alpha'(\rho)>0$

- Particle slow down at high density (slower, more tumbles, longer tumbles ...)
- Instability mechanism: feedback loop [Cates, Tailleur, Ann. Rev. of Cond. Mat. Phys. 2015]
 - Bacteria accumulate where they are less motile
 - Bacteria lose motility at high density
 - → Microscopic simulations starting from homogeneous systems

$$t = 10^3 \tau$$
 $t = 10^4 \tau$ $t = 10^5 \tau$

 $\alpha'(\rho)>0$

- · Slow coarsening leads to complete motility-induced phase separation
- No finite-size patterns: What is the missing ingredient?

Pattern formation in bacterial colonies: a simple mechanism

- Coarsening is slow
 —> Long-time dynamics (24 hours)
- Large-scale description of run & tumble dynamics:

$$\dot{\rho} = \nabla \left[\frac{v^2 \beta}{d\alpha(\beta + \alpha)} \nabla \rho + \frac{v \rho}{d\alpha} \nabla \frac{v \beta}{\alpha + \beta} \right]$$

Pattern formation in bacterial colonies: a simple mechanism

- Large-scale description of run & tumble dynamics:

$$\dot{\rho} = \nabla \left[\frac{v^2 \beta}{d\alpha(\beta + \alpha)} \nabla \rho + \frac{v\rho}{d\alpha} \nabla \frac{v\beta}{\alpha + \beta} \right]$$

• Missing ingredient: population dynamics

$$\dot{\rho} = -\nabla \cdot J[\rho] + \mu \rho \left(1 - \frac{\rho}{\rho_0}\right)$$

Pattern formation in bacterial colonies: a simple mechanism

- Coarsening is slow
 —> Long-time dynamics (24 hours)
- Large-scale description of run & tumble dynamics:
- Missing ingredient: population dynamics

$$\dot{\rho} = -\nabla \cdot \boldsymbol{J}[\rho] + \mu \rho \left(1 - \frac{\rho}{\rho_0}\right)$$

 $\dot{\rho} = \nabla \left[\frac{v^2 \beta}{d\alpha(\beta + \alpha)} \nabla \rho + \frac{v \rho}{d\alpha} \nabla \frac{v \beta}{\alpha + \beta} \right]$

Qualitatively accounts for the experiments

• What happened to the phase-separation ?

Birth & death vs phase separation

• Quorum-sensing \rightarrow Motility-Induced Phase separation \rightarrow (ρ_{low}, ρ_{high})

Birth & death vs phase separation

- Quorum-sensing \rightarrow Motility-Induced Phase separation \rightarrow (ρ_{low}, ρ_{high})
- Logistic growth: $\rho_{low} \leq \rho_0 \longrightarrow division; \rho_{high} \geq \rho_0 \longrightarrow death$

Birth & death vs phase separation

- Quorum-sensing \rightarrow Motility-Induced Phase separation \rightarrow ($\rho_{\rm low}, \rho_{\rm high}$)
- Logistic growth: $\rho_{low} \leq \rho_0 \longrightarrow division; \rho_{high} \geq \rho_0 \longrightarrow death$

Mathematically: linear stability analysis

• Simplified model: $\partial_t \rho = \nabla \cdot [D_c(\rho)\nabla\rho + \rho\nabla D_c(\rho)] - \kappa \Delta^2 \rho + \alpha \rho \left(1 - \frac{\rho}{\rho_0}\right)$

Mathematically: linear stability analysis

• Simplified model:
$$\partial_t \rho = \nabla \cdot [D_c(\rho)\nabla \rho + \rho\nabla D_c(\rho)] - \kappa \Delta^2 \rho + \alpha \rho \left(1 - \frac{\rho}{\rho_0}\right)$$

• Linear stability analysis: $\rho(\mathbf{r},t) = \rho_0 + \sum_{\mathbf{q}} \delta \rho_{\mathbf{q}}(t) e^{i\mathbf{q}\cdot\mathbf{r}} \longrightarrow \delta \rho_{\mathbf{q}}(t) = \delta \rho_{\mathbf{q}}(0) e^{\lambda_{\mathbf{q}}t}$

$$\lambda_{\mathbf{q}} = -[D_c(\rho_0) + \rho_0 D'_c(\rho_0)]q^2 - \kappa q^4 - \alpha$$

Mathematically: linear stability analysis

• Simplified model:
$$\partial_t \rho = \nabla \cdot [D_c(\rho)\nabla \rho + \rho\nabla D_c(\rho)] - \kappa \Delta^2 \rho + \alpha \rho \left(1 - \frac{\rho}{\rho_0}\right)$$

• Linear stability analysis: $\rho(\mathbf{r},t) = \rho_0 + \sum_{\mathbf{q}} \delta \rho_{\mathbf{q}}(t) e^{i\mathbf{q}\cdot\mathbf{r}} \longrightarrow \delta \rho_{\mathbf{q}}(t) = \delta \rho_{\mathbf{q}}(0) e^{\lambda_{\mathbf{q}}t}$

$$\lambda_{\mathbf{q}} = -[D_c(\rho_0) + \rho_0 D'_c(\rho_0)]q^2 - \kappa q^4 - \alpha$$

• Transition at finite q_c when $D_c(\rho_0) + \rho_0 D'_c(\rho_0)$ strongly negative \longrightarrow Patterns

Selection of a lengthscale

• Droplet of radius R

Selection of a lengthscale

- Droplet of radius ${\it R}$
- MIPS \longrightarrow Flux through boundary $\phi > 0$

Selection of a lengthscale

- Droplet of radius ${\it R}$
- MIPS \longrightarrow Flux through boundary $\phi > 0$
- Local birth/death rate $\alpha > 0$

$$\frac{d}{dt}$$
 (Mass in the droplet) = $-2\pi R\phi + \alpha\pi R^2$
Selection of a lengthscale

- Droplet of radius ${\it R}$
- MIPS \longrightarrow Flux through boundary $\phi > 0$
- Local birth/death rate $\alpha > 0$

$$rac{d}{dt}$$
 (Mass in the droplet) = $-2\pi R\phi + \alpha\pi R^2$

 \longrightarrow Steady-state radius $R \sim 2\phi/\alpha$

- Idea: two strains A and B
- Reciprocal motility control

- Idea: two strains A and B
- Reciprocal motility control

- Idea: two strains A and B
- Reciprocal motility control

- Idea: two strains A and B
- Reciprocal motility control

- Constant production of 3OC12HSL

 Enhance expression of CheZ in B
- Reciprocal enhancement or inhibition of motility can be implemented

Experimental results [N. Zhou, Y. Zhao, A. Daerr]

Mutual activation of motility

Mutual inhibition of motility

Macroscopic dynamics (Agnese Curatolo)

Time evolution of the density fields

- $\rho_A(\mathbf{r},t) = \sum_{\ell=1}^{N_A} \delta(\mathbf{r} \mathbf{r}^A_{\ell}(t))$
- $\rho_B(\mathbf{r},t) = \sum_{\ell=1}^{N_B} \delta(\mathbf{r} \mathbf{r}_{\ell}^B(t))$

Run-and-tumble dynamics + density-dependent swimming rate $\beta_A(\rho_B)$, $\beta_B(\rho_A)$

$$\dot{\boldsymbol{\rho}_{A}}(\mathbf{r},t) = \nabla \cdot \left(D_{A}(\rho_{B}) \nabla \rho_{A} - \mathbf{F}_{A}(\rho_{B}) \rho_{A} + \sqrt{2D_{A}(\rho_{B})\rho_{A}} \Lambda_{A} \right)$$
$$\dot{\boldsymbol{\rho}_{B}}(\mathbf{r},t) = \nabla \cdot \left(D_{B}(\rho_{A}) \nabla \rho_{B} - \mathbf{F}_{B}(\rho_{A})\rho_{B} + \sqrt{2D_{B}(\rho_{A})\rho_{B}} \Lambda_{B} \right)$$
$$\boldsymbol{\rho}_{A}(\rho_{y}) = \frac{v^{2}}{2\alpha \left(1 + \frac{\alpha}{\beta_{x}(\rho_{y})} \right)}; \quad \mathbf{F}_{x}(\rho_{y}) = -\frac{v^{2}}{2\alpha} \nabla \frac{1}{1 + \frac{\alpha}{\beta_{x}(\rho_{y})}}$$

Linear analysis of the hydrodynamic equations around homogeneous profiles ρ_A^0 and ρ_B^0 :

 $\rho_A = \rho_A^0 + \delta \rho_A \qquad \rho_B = \rho_B^0 + \delta \rho_B$

Linear analysis of the hydrodynamic equations around homogeneous profiles ρ_A^0 and ρ_B^0 :

$$\rho_A = \rho_A^0 + \delta \rho_A \qquad \rho_B = \rho_B^0 + \delta \rho_B$$

$$\frac{\alpha^2}{(\alpha+\beta_A)(\alpha+\beta_B)}\frac{\beta'_A(\rho^0_B)\beta'_B(\rho^0_A)}{\beta_A\beta_B} > \frac{1}{\rho_A\rho_B}$$

Linear analysis of the hydrodynamic equations around homogeneous profiles ρ_A^0 and ρ_B^0 :

$$\rho_A = \rho_A^0 + \delta \rho_A \qquad \rho_B = \rho_B^0 + \delta \rho_B$$

$$\frac{\alpha^2}{(\alpha+\beta_A)(\alpha+\beta_B)}\frac{\beta'_A(\rho^0_B)\beta'_B(\rho^0_A)}{\beta_A\beta_B} > \frac{1}{\rho_A\rho_B} > 0$$

Linear analysis of the hydrodynamic equations around homogeneous profiles ρ_A^0 and ρ_B^0 :

$$\rho_A = \rho_A^0 + \delta \rho_A \qquad \rho_B = \rho_B^0 + \delta \rho_B$$

$$\frac{\alpha^2}{(\alpha+\beta_A)(\alpha+\beta_B)}\frac{\beta_A'(\rho_B^0)\beta_B'(\rho_A^0)}{\beta_A\beta_B} > \frac{1}{\rho_A\rho_B} > 0$$

Mutual activation of the motility

Mutual inhibition of the motility

 $\beta'_A > 0 \qquad \beta'_B > 0$

$$\beta_A' < 0 \qquad \beta_B' < 0$$

Linear analysis of the hydrodynamic equations around homogeneous profiles ρ_A^0 and ρ_B^0 :

$$\rho_A = \rho_A^0 + \delta \rho_A \qquad \rho_B = \rho_B^0 + \delta \rho_B$$

$$\frac{\alpha^2}{(\alpha+\beta_A)(\alpha+\beta_B)}\frac{\beta_A'(\rho_B^0)\beta_B'(\rho_A^0)}{\beta_A\beta_B} > \frac{1}{\rho_A\rho_B} > 0$$

Mutual activation of the motility

Mutual inhibition of the motility

 $\beta_A' > 0 \qquad \beta_B' > 0$

$$\beta_A' < 0 \qquad \beta_B' < 0$$

Linear analysis of the hydrodynamic equations around homogeneous profiles ρ_A^0 and ρ_B^0 :

$$\rho_A = \rho_A^0 + \delta \rho_A \qquad \rho_B = \rho_B^0 + \delta \rho_B$$

$$\frac{\alpha^2}{(\alpha+\beta_A)(\alpha+\beta_B)}\frac{\beta_A'(\rho_B^0)\beta_B'(\rho_A^0)}{\beta_A\beta_B} > \frac{1}{\rho_A\rho_B} > 0$$

Mutual activation of the motility

Mutual inhibition of the motility

 $\beta_A' > 0 \qquad \beta_B' > 0$

$$\beta_A' < 0 \qquad \beta_B' < 0$$

Linear analysis of the hydrodynamic equations around homogeneous profiles ρ_A^0 and ρ_B^0 :

$$\rho_A = \rho_A^0 + \delta \rho_A \qquad \rho_B = \rho_B^0 + \delta \rho_B$$

$$\frac{\alpha^2}{(\alpha+\beta_A)(\alpha+\beta_B)}\frac{\beta_A'(\rho_B^0)\beta_B'(\rho_A^0)}{\beta_A\beta_B} > \frac{1}{\rho_A\rho_B} > 0$$

Mutual activation of the motility $\beta'_A > 0 \qquad \beta'_B > 0$ Mutual inhibition of the motility

$$\beta_A' < 0 \qquad \beta_B' < 0$$

Linear analysis of the hydrodynamic equations around homogeneous profiles ρ_A^0 and ρ_B^0 :

$$\rho_A = \rho_A^0 + \delta \rho_A \qquad \rho_B = \rho_B^0 + \delta \rho_B$$

$$\frac{\alpha^2}{(\alpha+\beta_A)(\alpha+\beta_B)}\frac{\beta_A'(\rho_B^0)\beta_B'(\rho_A^0)}{\beta_A\beta_B} > \frac{1}{\rho_A\rho_B} > 0$$

Mutual activation of the motility $\beta'_A > 0 \qquad \beta'_B > 0$ Mutual inhibition of the motility

$$\beta_A' < 0 \qquad \beta_B' < 0$$

Overall dynamics

At longer time-scales: population growth

$$\dot{\rho_A}(\mathbf{r},t) = \nabla \cdot \left[D_A(\rho_B) \nabla \rho_A - \mathbf{F}_A(\rho_B) \rho_A \right] - \kappa \Delta^2 \rho_A + \mu \rho_A \left(1 - \frac{\rho_A + \rho_B}{\rho_0} \right)$$
$$\dot{\rho_B}(\mathbf{r},t) = \nabla \cdot \left[D_B(\rho_A) \nabla \rho_B - \mathbf{F}_B(\rho_A) \rho_B \right] - \kappa \Delta^2 \rho_B + \mu \rho_B \left(1 - \frac{\rho_A + \rho_B}{\rho_0} \right)$$

Quorum-sensing interactions

Population dynamics

Mutual activation of motility

Mutual inhibition of motility

N-species MIPF

- N populations of interacting active particles
- Mutual inhibition —> Phase separation with colocalization
- Population dynamics arrest growth: MIPS -> MIPF

Simulations: spreading of the bacterial mixture

activation time

 tim

 tim inhibition

experiments

Summary

• A LOT can be achieved using motility-control to self-organize SPPs

• In silico & In experiments

• Theory starts to be well established

Summary

• A LOT can be achieved using motility-control to self-organize SPPs

• In silico & In experiments

• Theory starts to be well established

Thanks to: R. Blythe, T. Bodineau, M. Cates, A. Curatolo, A. Daerr, C. Erignoux, Y. Fily, J. Huang, Y. Kafri, M. Kardar, M. Kourbane-Houssenne, C. Liu, D. Marenduzzo, N. Zhou, J. O'Byrne, I. Pagonabarraga, A. Solon, J. Stenhammar, A. Thompson, R. Wittkowsky, Y. Zhao

A biased, unfair, restricted and incomplete view on MIPS & bacteria

MIPS

- → Quorum sensing: [Tailleur Cates PRL 100, 218103 (2008); Cates Tailleur EPL 101, 20010 (2013); Solon Cates Tailleur, EPSJT 224, 1231 (2015); ...]
- Pairwise forces: [Fily Marchetti PRL 108, 235702 (2012); Redner, Baskaran, Hagan PRL 110, 055701 (2013); Solon et al, PRL 114, 198301 (2015); ...]
- On lattice: [Thompson et al, JSM P02029 (2011); Soto & Golestanian, PRE 89, 012706 (2014); Manacorda & Puglisi, PRL 119, 208003 (2017); Whitelam at al, JCP 148, 154902 (2018); ...]
- → Generalized thermodynamics: [Solon et al., NJP 2018]
- · Pattern formation in single-strain bacterial colonies

 - -> Experiments: [Liu et al, Science 2011]
- Pattern formation in two-strain bacterial colonies: [Curatolo et al, bioarxiv:2019]