Assignment

Activity and chirality in continuum mechanics

Vincenzo Vitelli

Activity and chirality in continuum mechanics

Activity and chirality in continuum mechanics

Activity and chirality in continuum mechanics

Activity and chirality in continuum mechanics

Chate/Henkes
discussion

Symmetries and conservation laws

Carpet of microfluidic rotors, cilia

PRL 2010
continuum theories

Self-spinning building blocks

Some references on active and chiral mechanics

Dahler J.S., Scriven L.E. Angular momentum of continua. Nature 192(4797):36-37 (1961).
Scheibner, Souslov, Banerjee, Surowka, Irvine, Vitelli, Odd elasticity, Nat. Phys. (2020).
Uchida and Golestanian, Synchronization and Collective Dynamics in a Carpet of Microfluidic Rotors, PRL (2010)
Salbreux, G. \& Jülicher, F. Mechanics of active surfaces. Phys. Rev. E 96, 032404 (2017)
van Zuiden, B. C., Paulose, J., Irvine, W. T. M., Bartolo, D., Vitelli, V. Spatiotemporal order and emergent edge currents in active spinner materials. PNAS 113, 12919-12924 (2016)
Banerjee, D., Souslov, A., Abanov, A. G. \& Vitelli, V. Odd viscosity in chiral active fluids. Nat. Commun. 8, 1573 (2017).
Soni V., Bililign E. S., Magkiriadou S., Sacanna S., Bartolo D., Shelley M., Irvine W. T. M., The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15, 1188-1194 (2019).
Maitra, A. \& Ramaswamy, S. Oriented active solids. Phys. Rev. Lett. 123, 238001 (2019).

Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143-1189 (2013).
Prost, J., Jülicher, F. \& Joanny, J. Active gel physics. Nat. Phys. 11, 111-117 (2015).
Wiegmann, P. \& Abanov, A. G. Anomalous hydrodynamics of two-dimensional vortex fluids. Phys. Rev. Lett. 113, 034501 (2014)
Avron, J. E. Odd viscosity. J. Stat. Phys. 92, 543-557 (1998).
Han, M., et al. Statistical mechanics of a chiral active fluid. $\operatorname{arXiv}: 2002.07679 \mathrm{v} 2$ (2020)
Tsai J.C., Ye F, Rodriguez J., Gollub J.P., Lubensky T.C. A chiral granular gas. Phys Rev Lett 94(21):214301 (2005)
Markovich T, Tjhung E, Cates M.E., Chiral active matter: microscopic 'torque dipoles' have more than one hydrodynamic description $N J P$ (2019)
S Fürthauer, M Strempel, SW Grill, F Jülicher, Active chiral fluids, EPJE (2012)
M. Moshe, M. J. Bowick and M. C. Marchetti, Geometric Frustration and Solid-Solid Transitions in Model 2D Tissue, Phys. Rev. Lett. 120, 268105 (2018)
K. Yeo, E. Lushi, P. M. Vlahovska, Collective Dynamics in a Binary Mixture of Hydrodynamically Coupled Microrotors, Phys. Rev. Lett. 114, (2015)
N. H. P. Nguyen, D. Klotsa, M. Engel, and S. C. Glotzer, Emergent Collective Phenomena in a Mixture of Hard Shapes through Active Rotation, Phys. Rev. Lett. 112, 075701 (2014)

Fruchart, Hanai, Littlewood, Vitelli, Phase transitions in non-reciprocal active matter, arXiv 2003.13176 (2020).

Activity and chirality in continuum mechanics

continuum mechanics

continuum mechanics

take out conservation of energy

Activity

take out conservation of energy

Activity \Rightarrow chirality in continuum mechanics

take out conservation of energy

Activity \Rightarrow chirality in continuum mechanics

take out conservation of energy

How do you understand and model "phase" transitions ?

What is elasticity?

Linear elasticity

Linear elasticity with internal torques

Symmetry of the stiffness tensor

Stiffness
 Tensor
 Strain

Hooke's law

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

$$
K_{i j m n}=K_{m n i j}
$$

Where does this symmetry come from?

Energy conservation and other prejudices

If

$$
f=\frac{1}{2} C_{i j m n} u_{i j} u_{m n}
$$

Elastic Energy

Stress from potential energy

$$
\begin{gathered}
\text { If } \quad f=\frac{1}{2} C_{i j m n} u_{i j} u_{m n} \\
\text { Hooke's law } \quad \sigma_{i j}=\frac{1}{2}\left(C_{i j m n}+C_{m n i j}\right){\sigma_{i j}=\frac{\partial f}{\partial u_{i j}}}_{\text {Elastic Energy }}^{u_{m n}}
\end{gathered}
$$

Stiffness tensor must be symmetric

$$
\begin{gathered}
\text { If } \quad f=\frac{1}{2} C_{i j m n} u_{i j} u_{m n} \\
\text { Hooke's law } \sigma_{i j}=\underbrace{\frac{1}{2}\left(C_{i j m n}+C_{m n i j}\right)}_{K_{i j m n}}{ }_{c}^{\text {Elastic Energy }} \sigma_{i j}=\frac{\partial f}{\partial u_{i j}}
\end{gathered}
$$

Energy conservation and other prejudices

$$
f=\frac{1}{2} K_{i j m n} u_{i j} u_{m n}
$$

Elastic Energy

$$
\sigma_{i j}=\frac{\partial f}{\partial u_{i j}}
$$

Hooke's law

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

Then

$$
K_{i j m n}=K_{m n i j}
$$

Symmetry is a consequence of potential elastic energy

What if energy is not conserved?

$f=\underline{\frac{1}{2}} K_{i j m n} \not \psi_{\imath j} u_{m n}$
 allow for non conservative forces

Hooke's law

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

compatible with linear momentum conservation

Hooke's law is still valid

allow for non conservative forces

Hooke's law

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

compatible with linear momentum conservation

$$
K_{i j m n}=K_{i j m n}^{e}+K_{i j m n}^{o}
$$

but the stiffness tensor is no longer symmetric

Scheibner, Souslov, Banerjee, Surowka, Irvine, Vitelli, Nat Phys 2020

Odd elasticity

$$
f=\underline{\frac{1}{2} K_{i j m} \not t_{i j} u_{m n}} \quad \begin{gathered}
\text { allow for } \\
\text { non conservative } \\
\text { forces }
\end{gathered}
$$

Hooke's law $\quad \sigma_{i j}=K_{i j m n} u_{m n}$
compatible with linear momentum conservation

$$
\begin{gathered}
K_{i j m n}=K_{i j m n}^{e}+K_{i j m n}^{o} \\
K_{i j m n}^{e}=K_{m n i j}^{e} \quad \begin{array}{|c}
\text { NEW } \\
\text { MOD }
\end{array} \quad-K_{m n i j}^{o}
\end{gathered}
$$

Odd elasticity

Hooke's law

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

$$
K_{i j m n}=K_{i j m n}^{e}+K_{i j m n}^{o}
$$

$$
K_{i j m n}^{e}=K_{m n i j}^{e} \quad K_{i j m n}^{o}=-K_{m n i j}^{o}
$$

NEW
MODULI

Visual linear elasticity in 2D

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

Visual representation of strain

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

Visual representation of strain

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

Visual representation of strain

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

\square

Visual representation of strain

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

Visual representation of strain

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

Visual representation of strain

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

Visual representation of strain

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

Visual representation of strain

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

Visual representation of stress

Let's start from scratch

$$
\begin{aligned}
\sigma_{i j} & =K_{i j m n} u_{m n} \\
\sigma_{a} & =K_{a b} u_{b}
\end{aligned}
$$

$$
\left(\begin{array}{l}
\oplus \\
(0) \\
(2)
\end{array}\right)=\left(\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right)\left(\begin{array}{l}
\square \\
\square \\
\square
\end{array}\right)
$$

Let's start from scratch

$$
\begin{aligned}
\sigma_{i j} & =K_{i j m n} u_{m n} \\
\sigma_{a} & =K_{a b} u_{b}
\end{aligned}
$$

Assumption 1: Isotropy

$$
\left(\begin{array}{l}
(4) \\
(\rightarrow) \\
(2)
\end{array}\right)=\left(\begin{array}{llll}
? & ? & 0 & 0 \\
? & ? & 0 & 0 \\
0 & 0 & ? & ? \\
0 & 0 & -? & ?
\end{array}\right)\left(\begin{array}{l}
\square \\
\square \\
\square
\end{array}\right)
$$

Let's start from scratch

$$
\begin{aligned}
\sigma_{i j} & =K_{i j m n} u_{m n} \\
\sigma_{a} & =K_{a b} u_{b}
\end{aligned}
$$

Assumption 2: Deformation Dependence

$$
\left(\begin{array}{l}
\text { (4) } \\
\text { (a) } \\
\text { (3) }
\end{array}\right)=\left(\begin{array}{llll}
? & 0 & 0 & 0 \\
? & 0 & 0 & 0 \\
0 & 0 & ? & ? \\
0 & 0 & -? & ?
\end{array}\right)\left(\begin{array}{l}
\square \\
\square \\
\square
\end{array}\right)
$$

Passive elasticity of isotropic 2D solids

$$
\begin{aligned}
& \sigma_{i j}=K_{i j m n} u_{m n} \\
& \left(\begin{array}{c}
\text { (®) } \\
\text { (©) } \\
\text { (*) }
\end{array}\right)=\left(\begin{array}{cccc}
\mathbf{B} & 0 & 0 & 0 \\
? & 0 & 0 & 0 \\
0 & 0 & \mu & ? \\
0 & 0 & -? & \mu
\end{array}\right)\left(\begin{array}{l}
\square \\
\square \\
\square
\end{array}\right)
\end{aligned}
$$

Odd elasticity

$$
\begin{aligned}
\sigma_{i j} & =K_{i j m n} u_{m n} \\
\sigma_{a} & =K_{a b} u_{b}
\end{aligned}
$$

two additional moduli
would be zero if energy is conserved!

CHIRALITY EMERGES

$$
K_{i j m n}^{o}=-K_{m n i j}^{o}
$$

Odd elasticity: static response

Odd elasticity: static response

$$
\left(\begin{array}{c}
\text { (®) } \\
\text { (®) } \\
\text { (2) }
\end{array}\right)=\left(\begin{array}{cccc}
\mathbf{B} & 0 & 0 & 0 \\
\mathbf{A} & 0 & 0 & 0 \\
0 & 0 & \boldsymbol{\mu} & \mathbf{K}^{0} \\
0 & 0 & -\mathrm{K}^{\circ} & \boldsymbol{\mu}
\end{array}\right)\left(\begin{array}{l}
\square \\
\square \\
\square
\end{array}\right)
$$

CHIRALITY COMES FROM TORQUES

Odd elasticity: static response

$$
\left(\begin{array}{l}
\text { (3) } \\
\text { (3) } \\
\text { (20) }
\end{array}\right)=\left(\begin{array}{cccc}
\mathbf{B} & 0 & 0 & 0 \\
\mathbf{A} & 0 & 0 & 0 \\
\hline 0 & 0 & \boldsymbol{\mu} & \mathbb{K}^{\circ} \\
0 & 0 & -\mathrm{K}^{\circ} & \boldsymbol{\mu}
\end{array}\right)\left(\begin{array}{r}
\square \\
\square \\
\square
\end{array}\right)
$$

Odd elasticity: static response

$$
\left(\begin{array}{c}
\text { (®) } \\
\text { (®) } \\
\text { (2) }
\end{array}\right)=\left(\begin{array}{cccc}
\mathbf{B} & 0 & 0 & 0 \\
\mathbf{A} & 0 & 0 & 0 \\
0 & 0 & \boldsymbol{\mu} & \mathbf{K}^{0} \\
0 & 0 & -\mathrm{K}^{\circ} & \boldsymbol{\mu}
\end{array}\right)\left(\begin{array}{l}
\square \\
\square \\
\square
\end{array}\right)
$$

Non-reciprocity from odd coefficients

Odd elasticity: static response

$$
K^{o}>0
$$

$$
\left(\begin{array}{c}
\text { (®) } \\
\text { (®) } \\
\text { (2) }
\end{array}\right)=\left(\begin{array}{cccc}
\mathbf{B} & 0 & 0 & 0 \\
\mathbf{A} & 0 & 0 & 0 \\
0 & 0 & \boldsymbol{\mu} & \mathbf{K}^{0} \\
0 & 0 & -\mathrm{K}^{\circ} & \boldsymbol{\mu}
\end{array}\right)\left(\begin{array}{l}
\square \\
\square \\
\square
\end{array}\right)
$$

"ROTATION" IN SHEAR SPACE

Odd elasticity: static response

"ROTATION" IN SHEAR SPACE

Non-reciprocity from odd coefficients

Odd elasticity: static response

$$
\left(\begin{array}{c}
(6) \\
\text { (a) } \\
\text { (2) } \\
\text { (3) }
\end{array}\right)=\left(\begin{array}{cccc}
\mathbf{B} & 0 & 0 & 0 \\
\mathbf{A} & 0 & 0 & 0 \\
0 & 0 & \boldsymbol{\mu} & \mathrm{~K}^{\circ} \\
0 & 0 & -\mathrm{K}^{\circ} & \boldsymbol{\mu}
\end{array}\right)\left(\begin{array}{c}
\square \\
\square \\
\square
\end{array}\right)
$$

"ROTATION" IN SHEAR SPACE

Two odd moduli for isotropic solids

Elastic engine cycle

Quasistatic

$$
\mathrm{d} w=-\sigma_{i j} \mathrm{~d} u_{i j}
$$

$$
w_{c y c l e}=-\oint K_{i j m n}^{o} u_{m n} \mathrm{~d} u_{i j}
$$

S_{2}

$$
\binom{(\pi)}{(20)}=\left(\begin{array}{cc}
\boldsymbol{\mu} & \mathrm{K}^{\circ} \\
-\mathrm{K}^{\circ} & \boldsymbol{\mu}
\end{array}\right)\binom{\square}{\square}
$$

Assignment

Microscopic model I: active bonds

off

000000

Microscopic model I: active bonds

off

 $\square 000000$$\odot$

Microscopic model I: active bonds

off

000000

Microscopic model I: active bonds

$$
\begin{aligned}
& \text { Off } 000000
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{F}=-\left(k \hat{\mathbf{r}}+k^{o} \hat{\varphi}\right) \delta r \\
& \operatorname{curl} \mathbf{F} \propto k^{o}
\end{aligned}
$$

Microscopic model I: active bonds

off

Active

$$
\mathbf{F}=-\left(k \hat{\mathbf{r}}+k^{o} \hat{\varphi}\right) \delta r
$$

$\operatorname{curl} \mathbf{F} \propto k^{o}$

Active bonds are microscopic engines

Active bonds are microscopic engines

Off 000000
 \odot

 $\mathbf{F}=-\left(k \hat{\mathbf{r}}+k^{o} \hat{\varphi}\right) \delta r$
 $\operatorname{curl} \mathbf{F} \propto k^{o}$

Active bonds are microscopic engines

Active bonds are microscopic engines

$$
\mathbf{F}=-\left(k \hat{\mathbf{r}}+k^{o} \hat{\varphi}\right) \delta r
$$

$\operatorname{curl} \mathbf{F} \propto k^{o}$

Active bonds are microscopic engines

Off $\square 00000$

$$
\mathbf{F}=-\left(k \hat{\mathbf{r}}+k^{o} \hat{\varphi}\right) \delta r
$$

$\operatorname{curl} \mathbf{F} \propto k^{o}$

Active bonds are microscopic engines

$\mathbf{F}=-\left(k \hat{\mathbf{r}}+k^{o} \hat{\varphi}\right) \delta r$
$\operatorname{curl} \mathbf{F} \propto k^{o}$

Coarse-graining

$$
\begin{aligned}
& \text { triangular lattice } \\
& A=2 K^{o}=\frac{\sqrt{3}}{2} k^{o}
\end{aligned}
$$

Linear Momentum conserved

$$
\mathbf{F}=-\left(k \hat{\mathbf{r}}+k^{o} \hat{\varphi}\right) \delta r
$$

Beam violates:

$$
\operatorname{curl} \mathbf{F} \propto k^{o}
$$

(1) Energy Conservation
(2) Angular momentum Conservation

Microscopic model II: active hinges

Passive Elastodynamics

Inertial

$$
\vec{F}=m \vec{a}
$$

Transverse wave speed $\sim \sqrt{\mu}$

$$
\begin{aligned}
& F_{i}=\partial_{j} \sigma_{i j} \\
& \sigma_{i j}=K_{i j m n} u_{m n}
\end{aligned}
$$

Odd Elastodynamics

Odd Wave

$$
\begin{aligned}
\eta \partial_{t} u_{i} & =\partial_{j} \sigma_{i j} \\
\sigma_{i j} & =K_{i j m n}^{0} u_{m n}
\end{aligned}
$$

self-sustained elastic waves propagation in overdamped solids without rigidity!

$$
\begin{aligned}
K^{o} & >0 \\
B & =0 \\
\mu & =0 \\
A & =0
\end{aligned}
$$

Odd Elastodynamics

Odd Wave

$$
\begin{aligned}
\eta \partial_{t} u_{i} & =\partial_{j} \sigma_{i j} \\
\sigma_{i j} & =K_{i j m n}^{0} u_{m n}
\end{aligned}
$$

Elastic engine cycle powers the wave

$$
\begin{aligned}
K^{o} & >0 \\
B & =0 \\
\mu & =0 \\
A & =0
\end{aligned}
$$

Wave speed from energy balance

Period $T=\frac{2 \pi}{\omega}$

$$
v=\frac{2 \pi R}{T}
$$

Energy in $=2 K^{o} \cdot$ Area $=2 K^{o} \pi(q R)^{2}$
Energy in = Energy out
$\Longrightarrow \omega=\frac{K^{o} q^{2}}{\eta}$
Energy out $=\eta v^{2} T=\eta 2 \pi R^{2} \omega$
\Longrightarrow speed $=\frac{d \omega}{d q}=\frac{2 K^{o}}{\eta} q$

Phase Diagram

Hermitian dynamical matrix

$$
\mathbf{F}=-\left(k \hat{\mathbf{r}}+k^{o} \hat{\boldsymbol{\varphi}}\right) \delta r
$$

$$
A=2 K^{o}=\frac{\sqrt{3}}{2} k^{o}
$$

Longitudinal

Transverse

$$
-i \omega \Gamma\binom{u_{\|}}{u_{\perp}}=-q^{2}\left(\begin{array}{cc}
B+\mu & K^{\mathrm{o}} \\
-K^{\mathrm{o}}-A & \mu
\end{array}\right)\binom{u_{\|}}{u_{\perp}}
$$

Phase Diagram

Non-Hermitian dynamical matrix

$$
\mathbf{F}=-\left(k \hat{\mathbf{r}}+k^{o} \hat{\boldsymbol{\varphi}}\right) \delta r
$$

$$
A=2 K^{o}=\frac{\sqrt{3}}{2} k^{o}
$$

\star

$$
-i \omega \Gamma\binom{u_{\|}}{u_{\perp}}=-q^{2}\left(\begin{array}{cc}
B+\mu & K^{o} \\
-K^{o}-A & \mu
\end{array}\right)\binom{u_{\|}}{u_{\perp}}
$$

Phase Diagram

Non-Hermitian dynamical matrix

$$
\mathbf{F}=-\left(k \hat{\mathbf{r}}+k^{o} \hat{\boldsymbol{\varphi}}\right) \delta r
$$

$$
A=2 K^{o}=\frac{\sqrt{3}}{2} k^{o}
$$

Exceptional Point

Phase transitions in non-reciprocal active systems

Fruchart, Hanai, Littlewood, Vitelli, arXiv 2003.13176 (2020)

Non-reciprocal binary Vicsek model

$$
J_{A B}=-J_{B A}
$$

(d) chiral

Some references on non-reciprocal active matter and non-Hermitian QM

- Synchronization and Collective Dynamics in a Carpet of Microfluidic Rotors, Uchida, Golestanian, PRL 2010
- Forces induced by nonequilibrium fluctuations: The Soret-Casimir effect, Najafi, Golestanian, arXiv:cond-mat/0308373
- Self-Assembly of Catalytically Active Colloidal Molecules: Tailoring Activity Through Surface Chemistry, Soto, Golestanian, PRL 2014
- Active Phase Separation in Mixtures of Chemically Interacting Particles, Agudo-Canalejo, Golestanian, PRL 2019
- Clusters, asters, and collective oscillations in chemotactic colloids, Saha, Golestanian, Ramaswamy PRE 2014
- Pairing, waltzing and scattering of chemotactic active colloids, Saha, Ramaswamy, Golestanian, NJP 2019
- Non-Hermitian localization in biological networks, Amir, Hatano, Nelson PRE 2016
- Localization Transitions in Non-Hermitian Quantum Mechanics, Hatano, Nelson, PRL 1996
- Non-Hermitian localization and population biology, Nelson, Shnerb, PRE 1998
- Asymmetric neural networks and the process of learning, Parisi, J Phys A 1986
- An Exactly Solvable Asymmetric Neural Network Model, Derrida, Gardner, Zippelius, EPL 1987
- Temporal Association in Asymmetric Neural Networks, Sompolinsky, Kanter, PRL 1986
- Hierarchical group dynamics in pigeon flocks, Nagy, Ákos, Biro, Vicsek, Nature 2010
- Intermittent collective dynamics emerge from conflicting imperatives in sheep herds, Ginelli, Peruani, Pillot, Chaté, Theraulaz, Bon, PNAS 2015,
- How many dissenters does it take to disorder a flock? Yllanes, Leoni, Marchetti, NJP 2017
- Non-mutual torques, spin inertia and turning instabilities in polar flocks, Dadhichi, Kethapelli, Chajwa, Ramaswamy, Maitra, arXiv 2019
- Driven Heisenberg magnets: Nonequilibrium criticality, spatiotemporal chaos and control, Das, Rao, Ramaswamy, EPL 2002
- Nonequilibrium steady states of the isotropic classical magnet, Das, Rao, Ramaswamy, arXiv 2004
- Statistical mechanics of a chiral active fluid, Han, M., et al. arXiv:2002.07679v2 (2020).
- Statistical Mechanics where Newton's Third Law is Broken, Ivlev, Bartnick, Heinen, Du, Nosenko, Löwen, PRX 2015
- Non-reciprocal robotic metamaterials, Brandenbourger, Locsin, Lerner, Coulais, Nature Comm. 2019
- Observation of bulk boundary correspondence breakdown in topolectrical circuits, Helbig ... and Thomale, arXiv 2019
- Giant Amplification of Noise in Fluctuation-Induced Pattern Formation, Biancalani, Jafarpour, Goldenfeld, PRL 2017
- Perturbation theory for linear operators, Kato, 1984
- Critical fluctuations and many body exceptional points, RR. Hanai and P. B. Littlewood, arXiv:1908. 0324
- Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry, Bender, Boettcher, PRL 1998
- Sound isolation and giant linear nonreciprocity in a compact acoustic circulator, R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, Science 343 , $516,2014$.
- Phase transitions in non-reciprocal active matter, Fruchart, Hanai, Littlewood, Vitelli, arXiv 2003.131762020
- Odd elasticity, Scheibner, Souslov, Banerjee, Surowka, Irvine, Vitelli, Nat Phys 2020.

Vicsek deconstructed: XY model

spin B

spin A

$$
J_{i j}=J_{j i} \quad \begin{gathered}
\text { must be } \\
\text { symmetric }
\end{gathered}
$$

$$
H=-\sum_{(i, j)} J_{i j} \cos \left(\theta_{i}-\theta_{j}\right) \quad F_{i}=\frac{\partial H}{\partial \theta_{i}}=\sum_{j} J_{i j} \sin \left(\theta_{i}-\theta_{j}\right)
$$

Non reciprocal XY model

Fruchart, Hanai, Littlewood, Vitelli, arXiv 2003.13176 (2020)

$$
J_{i j}=-J_{j i} \quad \begin{gathered}
\text { can be } \\
\text { antisymmetric }
\end{gathered}
$$

robot B

$\operatorname{robot} A$

Programmable robots as non-reciprocal spins

Interactions can be non-conservative

$$
\underset{\text { Force }}{\left.F_{i}=\frac{\partial H}{\partial \theta_{i}}=\sum_{j} J_{i j} \sin \left(\theta_{i}-\theta_{j}\right) .4{ }^{2}\right)}
$$

Non reciprocal XY model

$$
J_{A B}=-J_{B A}
$$

Rotations induced by non-reciprocal interactions
can be antisymmetric

$$
F_{i}=\frac{\partial H}{\partial \theta_{i}}=\sum_{j} J_{i j} \sin \left(\theta_{i}-\theta_{j}\right)
$$

Any infinitesimal amount of reciprocal coupling will destroy the rotation of the two robots !

Non reciprocal XY model

$$
J_{A B}=-J_{B A}
$$

Rotations induced by non-reciprocal interactions
can be antisymmetric

$$
F_{i}=\frac{\partial H}{\partial \theta_{i}}=\sum_{j} J_{i j} \sin \left(\theta_{i}-\theta_{j}\right)
$$

Can this motion be stabilized by many body interactions?

Mean field phase diagram

(b) flocking
(c) antiflocking

(d) chiral

$$
\partial_{t}\binom{\vec{v}_{A}}{\vec{v}_{B}}=\left(\begin{array}{cc}
\alpha_{A}\left[\vec{v}_{A}, \vec{v}_{B}\right] & j_{A B} \\
j_{B A} & \alpha_{B}\left[\vec{v}_{A}, \vec{v}_{B}\right]
\end{array}\right)\binom{\vec{v}_{A}}{\vec{v}_{B}}
$$

Binary robotic fluid with self-propulsion

Black boundary is marked by exceptional points
Floquet stability analysis reveals that the chiral phase can be stabilized by many-body interactions

Exceptional point enforced pattern formation

(a) disordered

(c) antiflocking

(d) chiral

$$
\partial_{t}\binom{\vec{v}_{A}}{\vec{v}_{B}}=\left(\begin{array}{cc}
\alpha_{A}\left[\vec{v}_{A}, \vec{v}_{B}\right] & j_{A B} \\
j_{B A} & \alpha_{B}\left[\vec{v}_{A}, \vec{v}_{B}\right]
\end{array}\right)\binom{\vec{v}_{A}}{\vec{v}_{B}}
$$

(b) flocking

Binary robotic fluid with self-propulsion

Floquet stability analysis reveals that the chiral phase can be stabilized by many-body interactions Exceptional points plus convective terms generate pattern formation near phase boundaries

Fruchart, Hanai, Littlewood, Vitelli, arXiv 2003.13176 (2020)

Thanks for your attention

