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Cells in motion

Bovine Sperm

Breast tumor cell




Satellite image of the earth at night

Population distribution is governed by the environment (temperature,
proximity to water, landscape, ...) and communications.




Problem of interest: Cancer metastasis - the leading cause of
death of most cancer types
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Ref: Huang et al. Lab Chip, 2017; Wu and Swartz, J. Biomech. Eng, 2013; Kim and Wu, Ann Biomed Eng, 2012.
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Key biophysical and biochemical parameters that drive cell

migration

Chemical gradients
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* Diao et al. Lab Chip, 2006,
e Cheng et al, Lab Chip, 2007,

* Haessler et al. Biomedical Microdevice, 2009.

* Haessler et al. PNAS, 2011.

 Kim et al. PlosOne 2013

e Geum et al. Euro. Phys. Journal, 2016.
* Huang et al. Lab Chip, 2017.

* Kim et al. Integrative Biology, 2020.

Mechanical stress

Rong et al. Biophysical Journal, 2011
Hall et al. Biophysical Journal, 2012
Hall et al. Experimental cell research,
2013

Hall et al. PNAS, 2016.

Huang et al. Integrative Biology, 2017.
Suh et al. Integrative Biology, 2019



OUTLINE:

Single cell mechanics within a 3D biomatrix

* Single cell migration
* Mechanical driver
* Chemical gradient driver

Tumor spheroid invasion

 Tumor spheroid formation
* Tumor spheroid invasion (chemical and
mechanical driver)



Single cell migration in 3D

Integrin

Cells are supported by a 3D fiber
network

Differ from_2D cell migration

Cell-ECM tensional balance is
regulated by cell traction force.
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Wu and Swartz, J. Biomech. Eng. 2014.



Cell migration in two dimensional space (2D) versus 3D

Many cell types requires the 3D environment to
exhibit physiologically realistic phenotypes

. . . . 8
Figure adapted from: Wu and Swartz, Journal of biomechanical engineering, 2014.



Amoeboid and mesenchymal cell migration
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[1] Turner et. al. (2011). [2] Pankova, K., et al. (2010).
[3] Sabeh, F,, et al. (2009). [4] Pathak et al. (2011) Integr Biol



OUTLINE:

Single cell mechanics within a 3D biomatrix

* Chemical gradient driver
* Mechanical driver

Tumor spheroid invasion

 Tumor spheroid formation
* Tumor spheroid invasion (chemical and
mechanical driver)



Cancer cell chemotaxis in 3D microfluidic model

In collaboration with Prof. Melody Swartz at Swiss Institute of Technology, now
University of Chicago
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Roles of lymph node microenvironment in

cancer cell migration

Clinical wisdom:

Lymph nodes --

first stops of metastatic cancer cells of
many cancer types

Cancer cell types correlated
with lymph nodes metastasis

* Breast (Cabioglu et al. 2005)

* Melanoma(Taakeuchi et al., 2004)
e Colorectal (Gunther et al. 2005)

* Head and neck (Wang et al. 2005)
* Prostate (Heresi et al. 2005)

* Non-small lung (Takanami, 2003)
e Gastric (Mashino et al. 2002)

Ref: Shields et al. Cancer Research, 2007
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Gene profiling (breast cancer cells):
Chemokine receptors are implicated in
metastatic breast cancer cells

Muller et al. Nature, 2001
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Hypotheses:

Breast tumor cells are chemotactic in SDF-1a (ligand to
CXCR4) and CCL19 (ligand to CCR7) and gradients.
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Creating chemokine gradients using a hydrogel-based
microfluidic platform
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Diao et al. Lab on a Chip, 2006,

Cheng et al, Lab on a Chip, 2007,

Haessler et al. Biomedical Microdevice, 2009.

Haessler et al. PNAS, 2011.

Kim et al. PlosOne 2013

Geum et al. Euro. Phys. Journal, 2016. 4



3D in vitro cell culture using type | collagen (derived
from rat tails)
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Fibers (Cross and Stroock,
Biomaterials, 2010).
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MDA-MB-231 cells embedded in collagen



Tumor cell versus immune cell chemotaxis

Breast tumor cells (MDA-MB-231)
SDF-1a gradient

Dendritic cells
CCL19 gradient

Haessler et al. Biomedical Microdevice, 2009

Tumor cells are highly heterogenic
in terms of morphology and
motility
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Quantifying tumor cell chemotaxis
in cytokine gradients
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Chemokinesis: average speed U.
(Both scaled by average control cell speed. )
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Both dendritic and tumor cell chemotaxis is governed
by ligand receptor binding kinetics

Receptor/ligand: CXCR4/SDF-lalpha Solid lines is a fit to:
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« Tumor cell chemo-sensitivity is governed by the receptor — ligand binding kinetics.

« Fitted Kp agrees well with the reported value obtained using a FRET method.

1. Hassler et al. PNAS, 2011
2. Kim et al. PlosOne, 2013
3. Valenzuela-Fernandez et al, I. Biol Chem, 2001 (using FRET)
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Tumor cells execute Levy walks

a Gaussian vs. Crystal Ball b Lévy tail vs. Exponential tail
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Levy exponent reaches ~2.0 when CCL 19 concentration is close to its kinetic constant.

Kim et al. Integrative Biology, 2020. .



What did we learn?

Tumor cell migration is governed by ligand
receptor binding kinetics via either chemotaxis
and/or chemokinesis.

Question:

Which is more effective for reaching a distant
target, chemokinesis or chemotaxis?



OUTLINE:

Single cell mechanics within a 3D biomatrix

e Mechanical driver

Tumor spheroid invasion

 Tumor spheroid formation
* Tumor spheroid invasion (chemical and
mechanical driver)



Single cell mechanics

In collaboration with Vivek Shenoy at U Penn and Herbert Hui at
Cornell

Matt Hall Xingzhen Feng Farid Alisafaei
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A 3D traction force microscopy for single cell force
generation in collagen gel

Breast tumor cell (MDA-MB-
231) migrating within collagen
matrix embedded with
fluorescent beads

Rong et al. Biophysical Journal, 2011
Hall et al. Biophysical Journal, 2012
Hall et al. Experimental cell research, 2013

Cell-matrix cross talk revealed by the
deformation of surrounding matrix Hall ot al. PNAS. 2016.
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Mapping 3D fiber network deformation field
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Bead displacement field around a breast tumor cell embedded in type | collagen
Ref: Hall, PNAS, 2016; Wang H, et al. 2014, Biophys. J. 107(11):2592-2603.



Engineering collagen microstructure and mechanical
properties through fibril cross linking and gel density

[ 1.0 mg/ml collagen
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A set of collagen gel representative of tumor
microenvironment
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Collagen matrices span the physiological range of stiffness for normal and
malignant breast tissue
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Material model with fiber alignment (slide from Shenoy)

* The overall elastic energy consists the isotropic and fibrous contributions
3
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Mapping 3D gel deformation field using a 3D force
microscopy and a network-inspired material model
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Only the fiber network material model worked!

Ref: Hall, PNAS, 2016; Wang H, et al. 2014, Biophys. J. 107(11):2592-2603.
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Cancer cells exert sufficient strain to locally stiffen
collagen matrices

) K I ) 0. 0.4
Tensile Strain

Fibrous nonlinear elasticity is critical for cell- ECM interaction
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A mechanical feedback between cells and ECM
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Cell to ECM:

Cells exert forces sufficiently to stiffen and align ECM
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A mechanical feedback loop between cells and ECM

: p= 5.8E-13 (F-test vs. constant)
Slope 95% CI: [0.67,1.02] g 8
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ECM to cell:
Stiffer gel promotes larger cell force generation and stiffer cell body



Fibrous nonlinear elasticity promotes cell
force transmission distance
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Increasing fibrous nonlinear elasticity
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What did we learn?

Nonlinear anisotropy of the
material model is critical for cell function

Biological convergence
Biological materials promote cell-cell communication
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OUTLINE:

How does single cell move within a 3D biomatrix ?

How does tumor spheroid invade ?

 Tumor spheroid formation
* Tumor spheroid invasion (chemical and
mechanical driver)



Tumor spheroid formation and invasion

In collaboration with Jeffrey Segall
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Why spheroid?

Breast Carcinoma Progression
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Making tumor spheroids

Well diameter 200 um Green: malignant MDA-MB-231 cells

, , Red: non-tumorigenic epithelial MCF-10A cells
In collaboration with

Minglin Ma and Momita Das Song et al. (2016) Soft Matter
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Tumor spheroids inversion
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Huang et al. Q-bio arXiv, 2020. y



What did we learn?

Cells of different types segregate.
Shell — core inversion occurs due to differential growth.

Question?

Can the idea of phase transition be applied here?
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OUTLINE:

How does single cell move within a 3D biomatrix ?

How does tumor spheroid invade ?

* Tumor spheroid invasion (chemical and
mechanical driver)

40



Tumor architecture critically regulates
tumor invasion

t=0hr

Green: Metastatic cancer cells MDA-MB-231
Red: Non-tumorigenic cells MCF10A



Tumor architecture critically regulates
tumor invasion
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Green: Metastatic cancer cells MDA-MB-231
Red: Non-tumorigenic cells MCF10A
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Interstitial flow promotes tumor spheroid invasion via
down-reqgulation of E-cadherin

Flow

Control

»

Green: malignant MDA-MB-231 Red: non-tumorigenic epithelial
cells MCF-10A cells

Huang et al. Unpublished.



Interstitial flows enable co-culture tumor spheroid explosion
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Tumor spheroid chemotaxis in EGF gradients

No EGF gradients With EGF gradients

Suh et al, Unpublished, 2020.
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What did we learn?

Tumor architecture regulates tumor invasion.
Cell-cell adhesion regulates tumor invasion.

Question:

Can we predict tumor invasion knowing single
cell characteristics and dynamics?
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