
String theory duals
of

Lifshitz-Chern-Simons gauge theories

Koushik Balasubramanian, John McGreevy

Massachusetts Institute of Technology

Based on arXiv:1111.0634[hep-th]

Holographic Duality & Condensed Matter Physics, KITP Thursday 17 th November, 2011



Please let me know if I am not audible



Please let me know if I am not audible



Please let me know if I am not audible



Please let me know if I am not audible



Please let me know if I am not audible



Introduction

Gravity in AdS5 × S5 ⇐⇒ 3 + 1 D N = 4 SYM theory

Can we find examples of field theories that are holographically
dual to gravity in Lifshitz spacetime?

Gravity in Lif z
d+1“×”M ⇐⇒ ?

z,d,M
(1005.3291, 1008.2062, 1009.3445)

Examples of non-abelian Lifshitz gauge theories (z = 2):

• z = 2 Non-abelian Chern-Simons gauge theories studied by
Kachru, Mulligan and Nayak (and generalizations of KMN).

• z = 2 Non-abelian gauge theory studied by Hořava

No known FT (local) example for a generic value of z.

Claim #1: Non-Abelian LCS theories fit into the box.
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Overview

A confining solution with asymptotic z = 2 Lifshitz symmetry −
dual to pure gauge theory. KK modes decouple from low energy
dynamics. Somewhat unusual!

Holographic dictionary → arguments to support Claim # 1.

2 + 1 D z = 2 LCS theories (with or without adjoint matter) can be
realized as deformations of 3 + 1 D N = 4 SYM theory.

Pure z = 2 LCS gauge theories can flow to strongly-coupled
confining theories.
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A confining solution with asymptotic Lifshitz symmetry

ds2 = L2

(
2dx3dt + d�x2 + dr2

r2
+f(r)dx2

3 + ds2
Ω5

)
, f(r) = Γ2 −

(
r2

r4
0

)

F5 = 2L4(1 + �)Ω5, C0 =
Qx3

L3
, Φ = Φ0. Γ =

QeΦ0

2L3
, x3 ≡ x3 + L3.

1. Solves type IIB supergravity equations of motion.

2. Approaches Lif d=2
z=2 as r → 0 and ends at r = r� = r2

0Γ.

3. Regular... No conical singularity at r�! Fermions satisfy APBC
around x3. What determines r0?

4. r0 is related to a parameter specifying boundary conditions on
the metric!hep-th/990215

Confinement scale and KK scale can be made arbitrarily different!
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Identification of the dual field theory

Conformal boundary: ds2 = 2dx3dt + d�x2. Boundary theory is a
deformation of DLCQ N = 4 SYM theory.

RR-axion (C0) ⇐⇒ θ−angle of N = 4 theory.∫
θTr (F ∧ F ) =

∫
dθ ∧

(
A ∧ dA +

2
3
A ∧ A ∧ A

)

=
Q

L3

∫
dx3 ∧

(
A ∧ dA +

2
3
A ∧ A ∧ A

)

Reducing along x3

→ Q

∫ (
A ∧ dA +

2
3
A ∧ A ∧ A

)
Chern-Simons term

Asymptotic metric is invariant under t → λ2t, �x → λ�x ⇒ dual
field theory has z = 2 scale invariance.

Dual FT is a Lifshitz gauge theory with CS term.
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Let us consider the case when r0 → ∞ and x3 is non-compact

ds2
5 = L2

(
2dx3dt + d�x2 + dr2

r2
+

Q2e2Φ0

4L2
3

dx2
3 + ds2

Ω5

)

We can identify operators dual to bulk deformations according to
scaling dimension. Supersymmetry to the rescue! S5-Sidekick!

Operators that are irrelevant in the relativistic theory can become
marginal in the DLCQ theory.

Ei = F3i appears as an auxiliary field in the DLCQ theory and
[Ei]DLCQ = 1 ⇒Terms like tr (F3iF3iF3jF3j) cannot be ignored.

We can ignore operators with dimensions greater than 8 (z = 1
counting). Irrelevant w.r.t both z = 1 and z = 2 counting.
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Convenient to work with vielbeins.

e4 = dr/r, e0 = 2L3
dt

QeΦ0r2
, ey =

QeΦ0

2L3

(
dx3 +

4L2
3

Q2e2Φ0r2
dt

)
, ei =

dxi

r
.

Interested in the operators dual to ey
t and ey

3.

Linearized fluctuations of ey
t and ey

3 ⇒ operator dimensions.

∆± (ey
t ) = 2 ± 4 → O6, ∆± (ey

3) = 0, 4 → O4

Dilatational mode of S5 ⇐⇒ O8

Supersymmetry + SO(6) invariance ⇒
O6 = itr

(
[F3k, Fl3]F kl + F3k∂3X

I∂kXI
)

+ terms involving fermions.

O4 = T3t = tr

(
F3iFti − 1

4
F 2

)
+ terms involving fermions and scalars.

O8 = tr
(
[F3i, F3j ]2

)
+ terms involving scalars and fermions + . . .

hep-th/9804149, hep-th/9805082; hep-th/0011044, hep-th/9909082, hep-th/9805140
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When x3 is non-compact,

S3+1 = SN=4(θ = Qx3/L3) +
∫

dtd2xdx3 [κ6O6 + κ8O8 + . . .]

Γ determines κ6,8. Rename variables

F ti = F3i =
√

κ

κ6
Ei, F 3t = Ft3 = E3

In terms of these new variables

O6 = itr
(
[Ei, Ej ]F ij

)
+ . . . .

O4 = tr

(
EiFti − 1

4
F 2

)
+ . . .

O8 = tr
(
[Ei, Ej ]2

)
+ . . . + . . .

S3+1 = . . .+
∫

dtd2xdx3

[
iκtr[Ei, Ej ]F ij + λ1tr

(
[Ei, Ej ]2

)]
+

Q

L3

∫
dx3∧ tr (A ∧ F )

Resembles a gauge theory in first order formalism
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6
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S3+1 ≡
∫

dtd2xdx3
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2g′21
tr (EiDtAi + AtDiEi) +

1
4g2

2

tr
(
FijF

ij
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2g2
3
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3
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+
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[Ei, Ej ]2
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+ iκtr[Ei, Ej ]F ij + terms involving scalars and fermions
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+
Q

L3

∫
dx3 ∧ tr (A ∧ F )



At Last!

We will make the scalars and fermions massive. Let us compactify
x3 with APBC on fermions. Fermion mass ∼ L−1

3 . Scalar mass =
mX . Interested in the low energy effective theory for E < mX , L−1

3 .

KK reduction of the last term in S3+1 induces a CS term.

No Fermion zero modes. Scalar zero modes lifted by the mass
deformation tr

(
X2

)
.

Scalar mass deformation dual to an excited string state. Effect felt
through non-trivial boundary conditions on SUGRA fields. This
determines r0.[hep-th/990215] NOT PRECISE!

Zero modes of gauge field organize themselves into LCS gauge
theory.
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Dual Field Theory

S2+1 =
∫

dtd2x

[
1

2g′1
tr

(
ẼiDtÃi + ÃtDiẼi

)
+

1
4g′2

tr
(
F̃ij F̃

ij
)

+ λ′
1tr

(
[Ẽi, Ẽj ]2

)
+

iκ′tr[Ẽi, Ẽj ]F̃ ij

]
+

1
2g′23

∫
d2xdttr

(
Ẽ2

3

)
+

1
2α2

∫
d2xdttr

((
DiẼj

)2
)

+ Q

∫
tr

(
Ã ∧ F̃

)
+irrelevant terms

Ẽ3 decouples...Irrelevant terms and ∼ can be dropped

Kachru, Mulligan, Nayak (to appear)
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)
+

1
4g′2

tr
(
F̃ij F̃

ij
)

+ λ′
1tr

(
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Thank you!


