String theory duals of Lifshitz-Chern-Simons gauge theories

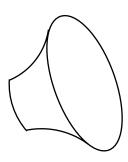
Koushik Balasubramanian, John McGreevy

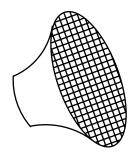
Massachusetts Institute of Technology

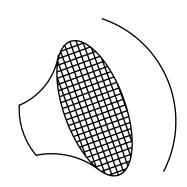
Based on arXiv:1111.0634[hep-th]

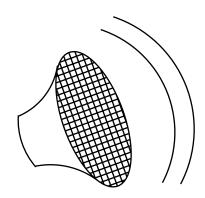
Holographic Duality & Condensed Matter Physics, KITP

Thursday 17th November, 2011

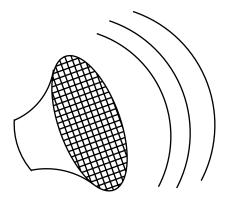








Please let me know if I am not audible



Gravity in $AdS_5 \times S^5 \iff 3+1$ D $\mathcal{N} = 4$ SYM theory

Can we find examples of field theories that are holographically dual to gravity in Lifshitz spacetime?

Gravity in Lif_{d+1}^{z} " \mathcal{M} \iff $[?]_{z,d,\mathcal{M}}$

Examples of non-abelian Lifshitz gauge theories (z = 2):

- z = 2 Non-abelian Chern-Simons gauge theories studied by Kachru, Mulligan and Nayak (and generalizations of KMN).
- z = 2 Non-abelian gauge theory studied by Hořava
- No known FT (local) example for a generic value of z.

Gravity in $AdS_5 \times S^5 \iff 3 + 1 \text{ D } \mathcal{N} = 4 \text{ SYM}$ theory

Can we find examples of field theories that are holographically dual to gravity in Lifshitz spacetime?

Gravity in Lif_{d+1}^z " $\mathcal{M} \iff ?_{z,d,\mathcal{M}}$

(1005.3291, 1008.2062, 1009.3445)

Examples of non-abelian Lifshitz gauge theories (z = 2):

• z = 2 Non-abelian Chern-Simons gauge theories studied by Kachru, Mulligan and Nayak (and generalizations of KMN).

• z = 2 Non-abelian gauge theory studied by Hořava

No known FT (local) example for a generic value of z.

Gravity in $AdS_5 \times S^5 \iff 3 + 1 \text{ D } \mathcal{N} = 4 \text{ SYM}$ theory

Can we find examples of field theories that are holographically dual to gravity in Lifshitz spacetime?

Gravity in Lif_{d+1}^{z} " $\mathcal{M} \iff ?_{z,d,\mathcal{M}}$

(1005.3291, 1008.2062, 1009.3445)

Examples of non-abelian Lifshitz gauge theories (z = 2):

- z = 2 Non-abelian Chern-Simons gauge theories studied by Kachru, Mulligan and Nayak (and generalizations of KMN).
- z = 2 Non-abelian gauge theory studied by Hořava

No known FT (local) example for a generic value of z.

Gravity in $AdS_5 \times S^5 \iff 3 + 1 \text{ D } \mathcal{N} = 4 \text{ SYM}$ theory

Can we find examples of field theories that are holographically dual to gravity in Lifshitz spacetime?

Gravity in Lif_{d+1}^{z} " \mathcal{M} \iff $\fbox{}_{z,d,\mathcal{M}}$

Examples of non-abelian Lifshitz gauge theories (z = 2):

- z = 2 Non-abelian Chern-Simons gauge theories studied by Kachru, Mulligan and Nayak (and generalizations of KMN).
- z = 2 Non-abelian gauge theory studied by Hořava
- No known FT (local) example for a generic value of z.

Gravity in $AdS_5 \times S^5 \iff 3 + 1 \text{ D } \mathcal{N} = 4 \text{ SYM}$ theory

Can we find examples of field theories that are holographically dual to gravity in Lifshitz spacetime?

Gravity in Lif_{d+1}^{z} " \mathcal{M} \iff $?_{z,d,\mathcal{M}}$

Examples of non-abelian Lifshitz gauge theories (z = 2):

- z = 2 Non-abelian Chern-Simons gauge theories studied by Kachru, Mulligan and Nayak (and generalizations of KMN).
- z = 2 Non-abelian gauge theory studied by Hořava

No known FT (local) example for a generic value of z. Claim #1: Non-Abelian LCS theories fit into the box.

Gravity in $AdS_5 \times S^5 \iff 3 + 1 \text{ D } \mathcal{N} = 4 \text{ SYM theory}$

Can we find examples of field theories that are holographically dual to gravity in Lifshitz spacetime?

Gravity in Lif_{d+1}^{z} " $\mathcal{M} \iff$?]_{z,d,\mathcal{M}}

Examples of non-abelian Lifshitz gauge theories (z = 2):

- z = 2 Non-abelian Chern-Simons gauge theories studied by Kachru, Mulligan and Nayak (and generalizations of KMN).
- z = 2 Non-abelian gauge theory studied by Hořava

No known FT (local) example for a generic value of z.

Gravity in $AdS_5 \times S^5 \iff 3 + 1 \text{ D } \mathcal{N} = 4 \text{ SYM theory}$

Can we find examples of field theories that are holographically dual to gravity in Lifshitz spacetime?

Gravity in Lif_{d+1}^{z} " \mathcal{M} \iff $\underbrace{?}_{z,d,\mathcal{M}}$

Examples of non-abelian Lifshitz gauge theories (z = 2):

- z = 2 Non-abelian Chern-Simons gauge theories studied by Kachru, Mulligan and Nayak (and generalizations of KMN).
- z = 2 Non-abelian gauge theory studied by Hořava

No known FT (local) example for a generic value of z.

Overview

A confining solution with asymptotic z = 2 Lifshitz symmetry – dual to pure gauge theory. KK modes decouple from low energy dynamics. Somewhat unusual!

Holographic dictionary \rightarrow arguments to support Claim # 1.

2 + 1 D z = 2 LCS theories (with or without adjoint matter) can be realized as deformations of 3 + 1 D $\mathcal{N} = 4$ SYM theory.

Holographic dictionary \rightarrow arguments to support Claim # 1.

2 + 1 D z = 2 LCS theories (with or without adjoint matter) can be realized as deformations of 3 + 1 D $\mathcal{N} = 4$ SYM theory.

Holographic dictionary \rightarrow arguments to support Claim # 1.

2 + 1 D z = 2 LCS theories (with or without adjoint matter) can be realized as deformations of 3 + 1 D $\mathcal{N} = 4$ SYM theory.

Holographic dictionary \rightarrow arguments to support Claim # 1.

2 + 1 D z = 2 LCS theories (with or without adjoint matter) can be realized as deformations of 3 + 1 D $\mathcal{N} = 4$ SYM theory.

Holographic dictionary \rightarrow arguments to support Claim # 1.

2 + 1 D z = 2 LCS theories (with or without adjoint matter) can be realized as deformations of 3 + 1 D $\mathcal{N} = 4$ SYM theory.

$$ds^{2} = L^{2} \left(\frac{2dx_{3}dt + d\vec{x}^{2} + dr^{2}}{r^{2}} + f(r)dx_{3}^{2} + ds_{\Omega^{5}}^{2} \right), \quad f(r) = \Gamma^{2} - \left(\frac{r^{2}}{r_{0}^{4}}\right)$$
$$F_{5} = 2L^{4}(1+\star)\Omega_{5}, \quad C_{0} = \frac{Qx_{3}}{L_{3}}, \quad \Phi = \Phi_{0}. \quad \Gamma = \frac{Qe^{\Phi_{0}}}{2L_{3}}, \quad x_{3} \equiv x_{3} + L_{3}.$$

1. Solves type IIB supergravity equations of motion.

2. Approaches $Lif_{z=2}^{d=2}$ as $r \to 0$ and ends at $r = r_{\star} = r_0^2 \Gamma$.

3. Regular... No conical singularity at r_* ! Fermions satisfy APBC around x_3 . What determines r_0 ?

4. r_0 is related to a parameter specifying boundary conditions on the metric!hep-th/990215

$$ds^{2} = L^{2} \left(\frac{2dx_{3}dt + d\vec{x}^{2} + dr^{2}}{r^{2}} + f(r)dx_{3}^{2} + ds_{\Omega^{5}}^{2} \right), \quad f(r) = \Gamma^{2} - \left(\frac{r^{2}}{r_{0}^{4}}\right)$$

$$F_{5} = 2L^{4}(1 + \star)\Omega_{5}, \quad C_{0} = \frac{Qx_{3}}{L_{3}}, \quad \Phi = \Phi_{0}, \quad \Gamma = \frac{Qe^{\Phi_{0}}}{2L_{3}}, \quad x_{3} \equiv x_{3} + L_{3}.$$

1. Solves type IIB supergravity equations of motion.

2. Approaches $Lif_{z=2}^{d=2}$ as $r \to 0$ and ends at $r = r_{\star} = r_0^2 \Gamma$.

3. Regular... No conical singularity at r_* ! Fermions satisfy APBC around x_3 . What determines r_0 ?

4. r_0 is related to a parameter specifying boundary conditions on the metric!

$$ds^{2} = L^{2} \left(\frac{2dx_{3}dt + d\vec{x}^{2} + dr^{2}}{r^{2}} + f(r)dx_{3}^{2} + ds_{\Omega^{5}}^{2} \right), \quad f(r) = \Gamma^{2} - \left(\frac{r^{2}}{r_{0}^{4}}\right)$$
$$F_{5} = 2L^{4}(1+\star)\Omega_{5}, \quad C_{0} = \frac{Qx_{3}}{L_{3}}, \quad \Phi = \Phi_{0}. \quad \Gamma = \frac{Qe^{\Phi_{0}}}{2L_{3}}, \quad x_{3} \equiv x_{3} + L_{3}.$$

1. Solves type IIB supergravity equations of motion.

2. Approaches $Lif_{z=2}^{d=2}$ as $r \to 0$ and ends at $r = r_{\star} = r_0^2 \Gamma$.

3. Regular... No conical singularity at r_* ! Fermions satisfy APBC around x_3 . What determines r_0 ?

4. r_0 is related to a parameter specifying boundary conditions on the metric!hep-th/990215

$$ds^{2} = L^{2} \left(\frac{2dx_{3}dt + d\vec{x}^{2} + dr^{2}}{r^{2}} + f(r)dx_{3}^{2} + ds_{\Omega^{5}}^{2} \right), \quad f(r) = \Gamma^{2} - \left(\frac{r^{2}}{r_{0}^{4}}\right)$$

$$F_{5} = 2L^{4}(1 + \star)\Omega_{5}, \quad C_{0} = \frac{Qx_{3}}{L_{3}}, \quad \Phi = \Phi_{0}, \quad \Gamma = \frac{Qe^{\Phi_{0}}}{2L_{3}}, \quad x_{3} \equiv x_{3} + L_{3}.$$

1. Solves type IIB supergravity equations of motion.

2. Approaches $Lif_{z=2}^{d=2}$ as $r \to 0$ and ends at $r = r_{\star} = r_0^2 \Gamma$.

3. Regular... No conical singularity at r_* ! Fermions satisfy APBC around x_3 . What determines r_0 ?

4. r_0 is related to a parameter specifying boundary conditions on the metric!_{hep-th/990215}

$$ds^{2} = L^{2} \left(\frac{2dx_{3}dt + d\vec{x}^{2} + dr^{2}}{r^{2}} + f(r)dx_{3}^{2} + ds_{\Omega^{5}}^{2} \right), \quad f(r) = \Gamma^{2} - \left(\frac{r^{2}}{r_{0}^{4}}\right)$$
$$F_{5} = 2L^{4}(1+\star)\Omega_{5}, \quad C_{0} = \frac{Qx_{3}}{L_{3}}, \quad \Phi = \Phi_{0}. \quad \Gamma = \frac{Qe^{\Phi_{0}}}{2L_{3}}, \quad x_{3} \equiv x_{3} + L_{3}.$$

1. Solves type IIB supergravity equations of motion.

2. Approaches $Lif_{z=2}^{d=2}$ as $r \to 0$ and ends at $r = r_{\star} = r_0^2 \Gamma$.

3. Regular... No conical singularity at r_{\star} ! Fermions satisfy APBC around x_3 . What determines r_0 ?

4. r_0 is related to a parameter specifying boundary conditions on the metric!_{hep-th/990215}

$$ds^{2} = L^{2} \left(\frac{2dx_{3}dt + d\vec{x}^{2} + dr^{2}}{r^{2}} + f(r)dx_{3}^{2} + ds_{\Omega^{5}}^{2} \right), \quad f(r) = \Gamma^{2} - \left(\frac{r^{2}}{r_{0}^{4}}\right)$$
$$F_{5} = 2L^{4}(1+\star)\Omega_{5}, \quad C_{0} = \frac{Qx_{3}}{L_{3}}, \quad \Phi = \Phi_{0}. \quad \Gamma = \frac{Qe^{\Phi_{0}}}{2L_{3}}, \quad x_{3} \equiv x_{3} + L_{3}.$$

1. Solves type IIB supergravity equations of motion.

2. Approaches $Lif_{z=2}^{d=2}$ as $r \to 0$ and ends at $r = r_{\star} = r_0^2 \Gamma$.

3. Regular... No conical singularity at r_{\star} ! Fermions satisfy APBC around x_3 . What determines r_0 ?

4. r_0 is related to a parameter specifying boundary conditions on the metric!

$$ds^{2} = L^{2} \left(\frac{2dx_{3}dt + d\vec{x}^{2} + dr^{2}}{r^{2}} + f(r)dx_{3}^{2} + ds_{\Omega^{5}}^{2} \right), \quad f(r) = \Gamma^{2} - \left(\frac{r^{2}}{r_{0}^{4}}\right)$$
$$F_{5} = 2L^{4}(1+\star)\Omega_{5}, \quad C_{0} = \frac{Qx_{3}}{L_{3}}, \quad \Phi = \Phi_{0}. \quad \Gamma = \frac{Qe^{\Phi_{0}}}{2L_{3}}, \quad x_{3} \equiv x_{3} + L_{3}.$$

1. Solves type IIB supergravity equations of motion.

2. Approaches $Lif_{z=2}^{d=2}$ as $r \to 0$ and ends at $r = r_{\star} = r_0^2 \Gamma$.

3. Regular... No conical singularity at r_{\star} ! Fermions satisfy APBC around x_3 . What determines r_0 ?

4. r_0 is related to a parameter specifying boundary conditions on the metric! hep-th/990215

Conformal boundary: $ds^2 = 2dx_3dt + d\vec{x}^2$. Boundary theory is a deformation of DLCQ $\mathcal{N} = 4$ SYM theory.

RR-axion $(C_0) \iff \theta$ -angle of $\mathcal{N} = 4$ theory.

$$\int \theta Tr \left(F \wedge F \right) = \int d\theta \wedge \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$
$$= \frac{Q}{L_3} \int dx_3 \wedge \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$

Reducing along x_3

$$\rightarrow Q \int \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$
 Chern-Simons term

Asymptotic metric is invariant under $t \to \lambda^2 t$, $\vec{x} \to \lambda \vec{x} \Rightarrow$ dual field theory has z = 2 scale invariance.

Conformal boundary: $ds^2 = 2dx_3dt + d\vec{x}^2$. Boundary theory is a deformation of DLCQ $\mathcal{N} = 4$ SYM theory.

RR-axion $(C_0) \iff \theta$ -angle of $\mathcal{N} = 4$ theory. $\int \theta Tr (F \wedge F) = \int d\theta \wedge \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right)$ $= \frac{Q}{L_2} \int dx_3 \wedge \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right)$

Reducing along x_3

$$\rightarrow Q \int \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$
 Chern-Simons term

Asymptotic metric is invariant under $t \to \lambda^2 t$, $\vec{x} \to \lambda \vec{x} \Rightarrow$ dual field theory has z = 2 scale invariance.

Conformal boundary: $ds^2 = 2dx_3dt + d\vec{x}^2$. Boundary theory is a deformation of DLCQ $\mathcal{N} = 4$ SYM theory.

RR-axion $(C_0) \iff \theta$ -angle of $\mathcal{N} = 4$ theory. $\int \theta Tr \left(F \land F\right) = \int d\theta \land \left(A \land dA + \frac{2}{3}A \land A \land A\right)$ $= \frac{Q}{L_3} \int dx_3 \land \left(A \land dA + \frac{2}{3}A \land A \land A\right)$

Reducing along x_3 $\rightarrow Q \int \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$ Chern-Simons term

Asymptotic metric is invariant under $t \to \lambda^2 t$, $\vec{x} \to \lambda \vec{x} \Rightarrow$ dual field theory has z = 2 scale invariance.

Conformal boundary: $ds^2 = 2dx_3dt + d\vec{x}^2$. Boundary theory is a deformation of DLCQ $\mathcal{N} = 4$ SYM theory.

RR-axion $(C_0) \iff \theta$ -angle of $\mathcal{N} = 4$ theory.

$$\int \theta Tr \left(F \wedge F \right) = \int d\theta \wedge \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$
$$= \frac{Q}{L_3} \int dx_3 \wedge \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$

Reducing along x_3

$$\rightarrow Q \int \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$

Chern-Simons term

Asymptotic metric is invariant under $t \to \lambda^2 t, \ \vec{x} \to \lambda \vec{x} \Rightarrow$ dual field theory has z = 2 scale invariance.

Conformal boundary: $ds^2 = 2dx_3dt + d\vec{x}^2$. Boundary theory is a deformation of DLCQ $\mathcal{N} = 4$ SYM theory.

RR-axion $(C_0) \iff \theta$ -angle of $\mathcal{N} = 4$ theory.

$$\int \theta Tr \left(F \wedge F \right) = \int d\theta \wedge \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$
$$= \frac{Q}{L_3} \int dx_3 \wedge \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$

Reducing along x_3

$$\rightarrow Q \int \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$
 Chern-Simons term

Asymptotic metric is invariant under $t \to \lambda^2 t$, $\vec{x} \to \lambda \vec{x} \Rightarrow$ dual field theory has z = 2 scale invariance.

Conformal boundary: $ds^2 = 2dx_3dt + d\vec{x}^2$. Boundary theory is a deformation of DLCQ $\mathcal{N} = 4$ SYM theory.

RR-axion $(C_0) \iff \theta$ -angle of $\mathcal{N} = 4$ theory.

$$\int \theta Tr \left(F \wedge F \right) = \int d\theta \wedge \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$
$$= \frac{Q}{L_3} \int dx_3 \wedge \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$

Reducing along x_3

$$\rightarrow Q \int \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$
 Chern-Simons term

Asymptotic metric is invariant under $t \to \lambda^2 t$, $\vec{x} \to \lambda \vec{x} \Rightarrow$ dual field theory has z = 2 scale invariance.

$$ds_5^2 = L^2 \left(\frac{2dx_3dt + d\vec{x}^2 + dr^2}{r^2} + \frac{Q^2 e^{2\Phi_0}}{4L_3^2} dx_3^2 + ds_{\Omega^5}^2 \right)$$

We can identify operators dual to bulk deformations according to scaling dimension. Supersymmetry to the rescue! S^5 -Sidekick!

Operators that are irrelevant in the relativistic theory can become marginal in the DLCQ theory.

 $E_i = F_{3i}$ appears as an auxiliary field in the DLCQ theory and $[E_i]_{DLCQ} = 1 \Rightarrow$ Terms like tr $(F_{3i}F_{3i}F_{3j}F_{3j})$ cannot be ignored.

$$ds_5^2 = L^2 \left(\frac{2dx_3dt + d\vec{x}^2 + dr^2}{r^2} + \frac{Q^2 e^{2\Phi_0}}{4L_3^2} dx_3^2 + ds_{\Omega^5}^2 \right)$$

We can identify operators dual to bulk deformations according to scaling dimension. Supersymmetry to the rescue! S^5 -Sidekick!

Operators that are irrelevant in the relativistic theory can become marginal in the DLCQ theory.

 $E_i = F_{3i}$ appears as an auxiliary field in the DLCQ theory and $[E_i]_{DLCQ} = 1 \Rightarrow$ Terms like tr $(F_{3i}F_{3i}F_{3j}F_{3j})$ cannot be ignored.

$$ds_5^2 = L^2 \left(\frac{2dx_3dt + d\vec{x}^2 + dr^2}{r^2} + \frac{Q^2 e^{2\Phi_0}}{4L_3^2} dx_3^2 + ds_{\Omega^5}^2 \right)$$

We can identify operators dual to bulk deformations according to scaling dimension. Supersymmetry to the rescue! S^5 -Sidekick!

Operators that are irrelevant in the relativistic theory can become marginal in the DLCQ theory.

 $E_i = F_{3i}$ appears as an auxiliary field in the DLCQ theory and $[E_i]_{DLCQ} = 1 \Rightarrow$ Terms like tr $(F_{3i}F_{3i}F_{3j}F_{3j})$ cannot be ignored.

$$ds_5^2 = L^2 \left(\frac{2dx_3dt + d\vec{x}^2 + dr^2}{r^2} + \frac{Q^2 e^{2\Phi_0}}{4L_3^2} dx_3^2 + ds_{\Omega^5}^2 \right)$$

We can identify operators dual to bulk deformations according to scaling dimension. Supersymmetry to the rescue! S^5 -Sidekick!

Operators that are irrelevant in the relativistic theory can become marginal in the DLCQ theory.

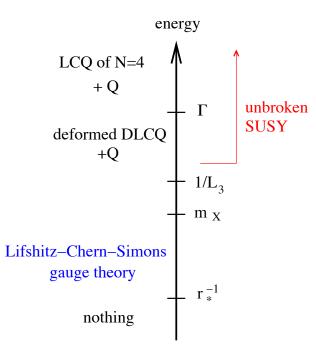
 $E_i = F_{3i}$ appears as an auxiliary field in the DLCQ theory and $[E_i]_{DLCQ} = 1 \Rightarrow$ Terms like tr $(F_{3i}F_{3i}F_{3j}F_{3j})$ cannot be ignored.

$$ds_5^2 = L^2 \left(\frac{2dx_3dt + d\vec{x}^2 + dr^2}{r^2} + \frac{Q^2 e^{2\Phi_0}}{4L_3^2} dx_3^2 + ds_{\Omega^5}^2 \right)$$

We can identify operators dual to bulk deformations according to scaling dimension. Supersymmetry to the rescue! S^5 -Sidekick!

Operators that are irrelevant in the relativistic theory can become marginal in the DLCQ theory.

 $E_i = F_{3i}$ appears as an auxiliary field in the DLCQ theory and $[E_i]_{DLCQ} = 1 \Rightarrow$ Terms like tr $(F_{3i}F_{3i}F_{3j}F_{3j})$ cannot be ignored.



$$e^4 = dr/r, \ e^0 = 2L_3 \frac{dt}{Qe^{\Phi_0}r^2}, \ e^y = \frac{Qe^{\Phi_0}}{2L_3} \left(dx_3 + \frac{4L_3^2}{Q^2e^{2\Phi_0}r^2} dt \right), \ e^i = \frac{dx^i}{r}.$$

Interested in the operators dual to e_t^y and e_3^y .

Linearized fluctuations of e_t^y and $e_3^y \Rightarrow$ operator dimensions.

$$\Delta_{\pm} \left(e_t^y \right) = 2 \pm 4 \to \mathcal{O}_6, \quad \Delta_{\pm} \left(e_3^y \right) = 0, 4 \to \mathcal{O}_4$$

Dilatational mode of $S^5 \iff \mathcal{O}_8$

Supersymmetry + SO(6) invariance \Rightarrow $\mathcal{O}_6 = i \text{tr} \left([F_{3k}, F_{l3}] F^{kl} + F_{3k} \partial_3 X^I \partial^k X^I \right) + \text{terms involving fermions.}$ $\mathcal{O}_4 = T_{3t} = \text{tr} \left(F_{3i} F_{ti} - \frac{1}{4} F^2 \right) + \text{terms involving fermions and scalars.}$ $\mathcal{O}_8 = \text{tr} \left([F_{3i}, F_{3j}]^2 \right) + \text{terms involving scalars and fermions} + \dots$

$$e^4 = dr/r, \ e^0 = 2L_3 \frac{dt}{Qe^{\Phi_0}r^2}, \ e^y = \frac{Qe^{\Phi_0}}{2L_3} \left(dx_3 + \frac{4L_3^2}{Q^2e^{2\Phi_0}r^2} dt \right), \ e^i = \frac{dx^i}{r}.$$

Interested in the operators dual to e_t^y and e_3^y .

Linearized fluctuations of e_t^y and $e_3^y \Rightarrow$ operator dimensions.

$$\Delta_{\pm} \left(e_t^y \right) = 2 \pm 4 \to \mathcal{O}_6, \quad \Delta_{\pm} \left(e_3^y \right) = 0, 4 \to \mathcal{O}_4$$

Dilatational mode of $S^5 \iff \mathcal{O}_8$

Supersymmetry + SO(6) invariance \Rightarrow $\mathcal{O}_6 = i \text{tr} \left([F_{3k}, F_{l3}] F^{kl} + F_{3k} \partial_3 X^I \partial^k X^I \right) + \text{terms involving fermions.}$ $\mathcal{O}_4 = T_{3t} = \text{tr} \left(F_{3i} F_{ti} - \frac{1}{4} F^2 \right) + \text{terms involving fermions and scalars.}$ $\mathcal{O}_8 = \text{tr} \left([F_{3i}, F_{3i}]^2 \right) + \text{terms involving scalars and fermions} + \dots$

$$e^4 = dr/r, \ e^0 = 2L_3 \frac{dt}{Qe^{\Phi_0}r^2}, \ e^y = \frac{Qe^{\Phi_0}}{2L_3} \left(dx_3 + \frac{4L_3^2}{Q^2e^{2\Phi_0}r^2} dt \right), \ e^i = \frac{dx^i}{r}.$$

Interested in the operators dual to e_t^y and e_3^y .

Linearized fluctuations of e_t^y and $e_3^y \Rightarrow$ operator dimensions.

$$\Delta_{\pm} \left(e_t^y \right) = 2 \pm 4 \to \mathcal{O}_6, \quad \Delta_{\pm} \left(e_3^y \right) = 0, 4 \to \mathcal{O}_4$$

Dilatational mode of $S^5 \iff \mathcal{O}_8$

Supersymmetry + SO(6) invariance \Rightarrow $\mathcal{O}_6 = i \text{tr} \left([F_{3k}, F_{l3}] F^{kl} + F_{3k} \partial_3 X^I \partial^k X^I \right) + \text{terms involving fermions.}$ $\mathcal{O}_4 = T_{3t} = \text{tr} \left(F_{3i} F_{ti} - \frac{1}{4} F^2 \right) + \text{terms involving fermions and scalars.}$ $\mathcal{O}_8 = \text{tr} \left([F_{3i}, F_{3i}]^2 \right) + \text{terms involving scalars and fermions} + \dots$

$$e^4 = dr/r, \ e^0 = 2L_3 \frac{dt}{Qe^{\Phi_0}r^2}, \ e^y = \frac{Qe^{\Phi_0}}{2L_3} \left(dx_3 + \frac{4L_3^2}{Q^2e^{2\Phi_0}r^2} dt \right), \ e^i = \frac{dx^i}{r}.$$

Interested in the operators dual to e_t^y and e_3^y .

Linearized fluctuations of e_t^y and $e_3^y \Rightarrow$ operator dimensions.

$$\Delta_{\pm} \left(e_t^y \right) = 2 \pm 4 \to \mathcal{O}_6, \quad \Delta_{\pm} \left(e_3^y \right) = 0, 4 \to \mathcal{O}_4$$

Dilatational mode of $S^5 \iff \mathcal{O}_8$

Supersymmetry + SO(6) invariance \Rightarrow $\mathcal{O}_6 = i \text{tr} \left([F_{3k}, F_{l3}] F^{kl} + F_{3k} \partial_3 X^I \partial^k X^I \right) + \text{terms involving fermions.}$ $\mathcal{O}_4 = T_{3t} = \text{tr} \left(F_{3i} F_{ti} - \frac{1}{4} F^2 \right) + \text{terms involving fermions and scalars.}$ $\mathcal{O}_8 = \text{tr} \left([F_{3i}, F_{3i}]^2 \right) + \text{terms involving scalars and fermions} + \dots$

$$e^4 = dr/r, \ e^0 = 2L_3 \frac{dt}{Qe^{\Phi_0}r^2}, \ e^y = \frac{Qe^{\Phi_0}}{2L_3} \left(dx_3 + \frac{4L_3^2}{Q^2e^{2\Phi_0}r^2} dt \right), \ e^i = \frac{dx^i}{r}.$$

Interested in the operators dual to e_t^y and e_3^y .

Linearized fluctuations of e_t^y and $e_3^y \Rightarrow$ operator dimensions.

$$\Delta_{\pm} \left(e_t^y \right) = 2 \pm 4 \to \mathcal{O}_6, \quad \Delta_{\pm} \left(e_3^y \right) = 0, 4 \to \mathcal{O}_4$$

Dilatational mode of $S^5 \iff \mathcal{O}_8$

Supersymmetry + SO(6) invariance \Rightarrow $\mathcal{O}_6 = i \text{tr} \left([F_{3k}, F_{l3}] F^{kl} + F_{3k} \partial_3 X^I \partial^k X^I \right) + \text{terms involving fermions.}$ $\mathcal{O}_4 = T_{3t} = \text{tr} \left(F_{3i} F_{ti} - \frac{1}{4} F^2 \right) + \text{terms involving fermions and scalars.}$ $\mathcal{O}_8 = \text{tr} \left([F_{3i}, F_{3i}]^2 \right) + \text{terms involving scalars and fermions} + \dots$

$$e^4 = dr/r, \ e^0 = 2L_3 \frac{dt}{Qe^{\Phi_0}r^2}, \ e^y = \frac{Qe^{\Phi_0}}{2L_3} \left(dx_3 + \frac{4L_3^2}{Q^2e^{2\Phi_0}r^2} dt \right), \ e^i = \frac{dx^i}{r}.$$

Interested in the operators dual to e_t^y and e_3^y .

Linearized fluctuations of e_t^y and $e_3^y \Rightarrow$ operator dimensions.

$$\Delta_{\pm} \left(e_t^y \right) = 2 \pm 4 \to \mathcal{O}_6, \quad \Delta_{\pm} \left(e_3^y \right) = 0, 4 \to \mathcal{O}_4$$

Dilatational mode of $S^5 \iff \mathcal{O}_8$

Supersymmetry + SO(6) invariance \Rightarrow $\mathcal{O}_6 = i \operatorname{tr} \left([F_{3k}, F_{l3}] F^{kl} + F_{3k} \partial_3 X^I \partial^k X^I \right) + \operatorname{terms}$ involving fermions. $\mathcal{O}_4 = T_{3t} = \operatorname{tr} \left(F_{3i} F_{ti} - \frac{1}{4} F^2 \right) + \operatorname{terms}$ involving fermions and scalars. $\mathcal{O}_8 = \operatorname{tr} \left([F_{3i}, F_{3j}]^2 \right) + \operatorname{terms}$ involving scalars and fermions + ...

$$S_{3+1} = S_{\mathcal{N}=4}(\theta = Qx^3/L_3) + \int dt d^2x dx_3 \left[\kappa_6 \mathcal{O}_6 + \kappa_8 \mathcal{O}_8 + \ldots\right]$$

 Γ determines $\kappa_{6,8}$. Rename variables

$$F^{ti} = F_{3i} = \sqrt{\frac{\kappa}{\kappa_6}} E_i, \ F^{3t} = F_{t3} = E_3$$

In terms of these new variables

$$\mathcal{O}_6 = i \mathrm{tr} \left([E_i, E_j] F^{ij} \right) + \dots$$
$$\mathcal{O}_4 = \mathrm{tr} \left(E_i F_{ti} - \frac{1}{4} F^2 \right) + \dots$$
$$\mathcal{O}_8 = \mathrm{tr} \left([E_i, E_j]^2 \right) + \dots + \dots$$

 $S_{3+1} = \ldots + \int dt d^2 x dx_3 \left[i\kappa \operatorname{tr}[E_i, E_j] F^{ij} + \lambda_1 \operatorname{tr}\left([E_i, E_j]^2\right) \right] + \frac{Q}{L_3} \int dx_3 \wedge \operatorname{tr}\left(A \wedge F\right)$

$$S_{3+1} = S_{\mathcal{N}=4}(\theta = Qx^3/L_3) + \int dt d^2x dx_3 \left[\kappa_6 \mathcal{O}_6 + \kappa_8 \mathcal{O}_8 + \ldots\right]$$

 Γ determines $\kappa_{6,8}$. Rename variables

$$F^{ti} = F_{3i} = \sqrt{\frac{\kappa}{\kappa_6}} E_i, \ F^{3t} = F_{t3} = E_3$$

In terms of these new variables

$$\mathcal{O}_{6} = i \mathrm{tr} \left([E_{i}, E_{j}] F^{ij} \right) + \dots$$
$$\mathcal{O}_{4} = \mathrm{tr} \left(E_{i} F_{ti} - \frac{1}{4} F^{2} \right) + \dots$$
$$\mathcal{O}_{8} = \mathrm{tr} \left([E_{i}, E_{j}]^{2} \right) + \dots + \dots$$

 $S_{3+1} = \ldots + \int dt d^2 x dx_3 \left[i\kappa \operatorname{tr}[E_i, E_j] F^{ij} + \lambda_1 \operatorname{tr}\left([E_i, E_j]^2\right) \right] + \frac{Q}{L_3} \int dx_3 \wedge \operatorname{tr}\left(A \wedge F\right)$

$$S_{3+1} = S_{\mathcal{N}=4}(\theta = Qx^3/L_3) + \int dt d^2x dx_3 \left[\kappa_6 \mathcal{O}_6 + \kappa_8 \mathcal{O}_8 + \ldots\right]$$

 Γ determines $\kappa_{6,8}$. Rename variables

$$F^{ti} = F_{3i} = \sqrt{\frac{\kappa}{\kappa_6}} E_i, \ F^{3t} = F_{t3} = E_3$$

In terms of these new variables

$$\mathcal{O}_{6} = i \mathrm{tr} \left([E_{i}, E_{j}] F^{ij} \right) + \dots$$
$$\mathcal{O}_{4} = \mathrm{tr} \left(E_{i} F_{ti} - \frac{1}{4} F^{2} \right) + \dots$$
$$\mathcal{O}_{8} = \mathrm{tr} \left([E_{i}, E_{j}]^{2} \right) + \dots + \dots$$

 $S_{3+1} = \ldots + \int dt d^2 x dx_3 \left[i\kappa \operatorname{tr}[E_i, E_j] F^{ij} + \lambda_1 \operatorname{tr}\left([E_i, E_j]^2\right) \right] + \frac{Q}{L_3} \int dx_3 \wedge \operatorname{tr}\left(A \wedge F\right)$

$$S_{3+1} = S_{\mathcal{N}=4}(\theta = Qx^3/L_3) + \int dt d^2x dx_3 \left[\kappa_6 \mathcal{O}_6 + \kappa_8 \mathcal{O}_8 + \ldots\right]$$

 Γ determines $\kappa_{6,8}$. Rename variables

$$F^{ti} = F_{3i} = \sqrt{\frac{\kappa}{\kappa_6}} E_i, \ F^{3t} = F_{t3} = E_3$$

In terms of these new variables

$$\mathcal{O}_{6} = i \mathrm{tr} \left([E_{i}, E_{j}] F^{ij} \right) + \dots$$
$$\mathcal{O}_{4} = \mathrm{tr} \left(E_{i} F_{ti} - \frac{1}{4} F^{2} \right) + \dots$$
$$\mathcal{O}_{8} = \mathrm{tr} \left([E_{i}, E_{j}]^{2} \right) + \dots + \dots$$

 $S_{3+1} = \ldots + \int dt d^2 x dx_3 \left[i\kappa \operatorname{tr}[E_i, E_j] F^{ij} + \lambda_1 \operatorname{tr}\left([E_i, E_j]^2 \right) \right] + \frac{Q}{L_3} \int dx_3 \wedge \operatorname{tr}\left(A \wedge F \right)$

$$S_{3+1} = S_{\mathcal{N}=4}(\theta = Qx^3/L_3) + \int dt d^2x dx_3 \left[\kappa_6 \mathcal{O}_6 + \kappa_8 \mathcal{O}_8 + \ldots\right]$$

 Γ determines $\kappa_{6,8}$. Rename variables

$$F^{ti} = F_{3i} = \sqrt{\frac{\kappa}{\kappa_6}} E_i, \ F^{3t} = F_{t3} = E_3$$

In terms of these new variables

$$\mathcal{O}_{6} = i \mathrm{tr} \left([E_{i}, E_{j}] F^{ij} \right) + \dots$$
$$\mathcal{O}_{4} = \mathrm{tr} \left(E_{i} F_{ti} - \frac{1}{4} F^{2} \right) + \dots$$
$$\mathcal{O}_{8} = \mathrm{tr} \left([E_{i}, E_{j}]^{2} \right) + \dots + \dots$$

 $S_{3+1} = \ldots + \int dt d^2 x dx_3 \left[i\kappa \operatorname{tr}[E_i, E_j] F^{ij} + \lambda_1 \operatorname{tr}\left([E_i, E_j]^2 \right) \right] + \frac{Q}{L_3} \int dx_3 \wedge \operatorname{tr}\left(A \wedge F \right)$

$$S_{3+1} = S_{\mathcal{N}=4}(\theta = Qx^3/L_3) + \int dt d^2x dx_3 \left[\kappa_6 \mathcal{O}_6 + \kappa_8 \mathcal{O}_8 + \ldots\right]$$

 Γ determines $\kappa_{6,8}$. Rename variables

$$F^{ti} = F_{3i} = \sqrt{\frac{\kappa}{\kappa_6}} E_i, \ F^{3t} = F_{t3} = E_3, \ {g'}_1^2 = g_1 L_3 = g^2 \sqrt{\frac{\kappa_6}{\kappa}},$$
$$\lambda_1 = \kappa_8 \frac{\kappa^2}{\kappa_6^2}, \ g_2 = g_3 = g$$

In terms of these new variables

$$S_{3+1} \equiv \int dt d^2 x dx_3 \left[\frac{1}{2g_1'^2} \text{tr} \left(E_i D_t A_i + A_t D_i E_i \right) + \frac{1}{4g_2^2} \text{tr} \left(F_{ij} F^{ij} \right) + \frac{1}{2g_3^2} \text{tr} \left(E_3^2 \right) + \frac{1}{2g_3'^2} \text{t$$

 $\lambda_1 \operatorname{tr} \left([E_i, E_j]^2 \right) + i \kappa \operatorname{tr} [E_i, E_j] F^{ij} + \operatorname{terms} \operatorname{involving} \operatorname{scalars} \operatorname{and} \operatorname{fermions}$

$$+\frac{Q}{L_3}\int dx_3\wedge \mathrm{tr}\,(A\wedge F)$$

We will make the scalars and fermions massive. Let us compactify x_3 with APBC on fermions. Fermion mass $\sim L_3^{-1}$. Scalar mass $= m_X$. Interested in the low energy effective theory for $E < m_X, L_3^{-1}$.

KK reduction of the last term in S_{3+1} induces a CS term.

No Fermion zero modes. Scalar zero modes lifted by the mass deformation tr (X^2) .

Scalar mass deformation dual to an excited string state. Effect felt through non-trivial boundary conditions on SUGRA fields. This determines $r_{0.1$ hep-th/9902151 NOT PRECISE!

We will make the scalars and fermions massive. Let us compactify x_3 with APBC on fermions. Fermion mass $\sim L_3^{-1}$. Scalar mass $= m_X$. Interested in the low energy effective theory for $E < m_X, L_3^{-1}$.

KK reduction of the last term in S_{3+1} induces a CS term.

No Fermion zero modes. Scalar zero modes lifted by the mass deformation tr (X^2) .

Scalar mass deformation dual to an excited string state. Effect felt through non-trivial boundary conditions on SUGRA fields. This determines $r_{0.1$ hep-th/9902151 NOT PRECISE!

We will make the scalars and fermions massive. Let us compactify x_3 with APBC on fermions. Fermion mass $\sim L_3^{-1}$. Scalar mass $= m_X$. Interested in the low energy effective theory for $E < m_X, L_3^{-1}$.

KK reduction of the last term in S_{3+1} induces a CS term.

No Fermion zero modes. Scalar zero modes lifted by the mass deformation tr (X^2) .

Scalar mass deformation dual to an excited string state. Effect felt through non-trivial boundary conditions on SUGRA fields. This determines $r_{0.1$ hep-th/9902151 NOT PRECISE!

We will make the scalars and fermions massive. Let us compactify x_3 with APBC on fermions. Fermion mass $\sim L_3^{-1}$. Scalar mass $= m_X$. Interested in the low energy effective theory for $E < m_X, L_3^{-1}$.

KK reduction of the last term in S_{3+1} induces a CS term.

No Fermion zero modes. Scalar zero modes lifted by the mass deformation tr (X^2) .

Scalar mass deformation dual to an excited string state. Effect felt through non-trivial boundary conditions on SUGRA fields. This determines $r_{0.[hep-th/990215]}$ NOT PRECISE!

We will make the scalars and fermions massive. Let us compactify x_3 with APBC on fermions. Fermion mass $\sim L_3^{-1}$. Scalar mass $= m_X$. Interested in the low energy effective theory for $E < m_X, L_3^{-1}$.

KK reduction of the last term in S_{3+1} induces a CS term.

No Fermion zero modes. Scalar zero modes lifted by the mass deformation tr (X^2) .

Scalar mass deformation dual to an excited string state. Effect felt through non-trivial boundary conditions on SUGRA fields. This determines $r_{0.[hep-th/990215]}$ NOT PRECISE!

Dual Field Theory

$$S_{2+1} = \int dt d^2 x \left[\frac{1}{2g_1'} \operatorname{tr} \left(\tilde{E}_i D_t \tilde{A}_i + \tilde{A}_t D_i \tilde{E}_i \right) + \frac{1}{4g'^2} \operatorname{tr} \left(\tilde{F}_{ij} \tilde{F}^{ij} \right) + \lambda_1' \operatorname{tr} \left([\tilde{E}_i, \tilde{E}_j]^2 \right) + i\kappa' \operatorname{tr} [\tilde{E}_i, \tilde{E}_j] \tilde{F}^{ij} \right] + \frac{1}{2g'_3^2} \int d^2 x dt \operatorname{tr} \left(\tilde{E}_3^2 \right) + \frac{1}{2\alpha^2} \int d^2 x dt \operatorname{tr} \left(\left(D_i \tilde{E}_j \right)^2 \right) + Q \int \operatorname{tr} \left(\tilde{A} \wedge \tilde{F} \right) dx dt \operatorname{tr} \left(\tilde{E}_i + \tilde{E}_i \right) dx dt dt \operatorname{tr} \left(\tilde{E}_i + \tilde{E}_i \right) dx dt dt \operatorname{tr} \left(\tilde{E}_i + \tilde{E$$

+irrelevant terms

 E_3 decouples...Irrelevant terms and \sim can be dropped

Kachru, Mulligan, Nayak (to appear)

Dual Field Theory

$$S_{2+1} = \int dt d^2 x \left[\frac{1}{2g_1'} \operatorname{tr} \left(\tilde{E}_i D_t \tilde{A}_i + \tilde{A}_t D_i \tilde{E}_i \right) + \frac{1}{4g'^2} \operatorname{tr} \left(\tilde{F}_{ij} \tilde{F}^{ij} \right) + \lambda_1' \operatorname{tr} \left([\tilde{E}_i, \tilde{E}_j]^2 \right) + i\kappa' \operatorname{tr} [\tilde{E}_i, \tilde{E}_j] \tilde{F}^{ij} \right] + \frac{1}{2g'_3^2} \int d^2 x dt \operatorname{tr} \left(\tilde{E}_3^2 \right) + \frac{1}{2\alpha^2} \int d^2 x dt \operatorname{tr} \left(\left(D_i \tilde{E}_j \right)^2 \right) + Q \int \operatorname{tr} \left(\tilde{A} \wedge \tilde{F} \right) dx dt \operatorname{tr} \left(\tilde{E}_i + \tilde{E}_j \right) dx dt dt dx dt \operatorname{tr} \left(\tilde{E}_i + \tilde{E}_j \right) dx dt \operatorname{tr} \left(\tilde{E}_i + \tilde{E}_j \right) dx dt dx dt \operatorname{tr} \left(\tilde{E}_i + \tilde{E}_j \right) dx dt dx dt \operatorname{tr} \left(\tilde{E}_i + \tilde{E}_j \right) dx dt dx$$

+irrelevant terms

 \tilde{E}_3 decouples...Irrelevant terms and \sim can be dropped

Kachru, Mulligan, Nayak (to appear)

Dual Field Theory

$$S_{2+1} = \int dt d^2 x \left[\frac{1}{2g_1'} \operatorname{tr} \left(\tilde{E}_i D_t \tilde{A}_i + \tilde{A}_t D_i \tilde{E}_i \right) + \frac{1}{4g'^2} \operatorname{tr} \left(\tilde{F}_{ij} \tilde{F}^{ij} \right) + \lambda_1' \operatorname{tr} \left([\tilde{E}_i, \tilde{E}_j]^2 \right) + i\kappa' \operatorname{tr} [\tilde{E}_i, \tilde{E}_j] \tilde{F}^{ij} \right] + \frac{1}{2g'_3^2} \int d^2 x dt \operatorname{tr} \left(\tilde{E}_3^2 \right) + \frac{1}{2\alpha^2} \int d^2 x dt \operatorname{tr} \left(\left(D_i \tilde{E}_j \right)^2 \right) + Q \int \operatorname{tr} \left(\tilde{A} \wedge \tilde{F} \right) + \operatorname{irrelevant terms}$$

, -----

 \tilde{E}_3 decouples...Irrelevant terms and \sim can be dropped

Kachru, Mulligan, Nayak (to appear)

Thank you!