# Imbalanced mixtures and anisotropic hydrodynamics in gauge/gravity duality

Johanna Erdmenger

Max Planck Institute for Physics, Munich

## Motivation:

Gauge/gravity duality: New tools for strongly coupled systems

Condensed matter physics: Many timely and interesting questions

How may the two be joined together?

This talk: Some examples

Examples include:

New holographic quantum critical points

Holographic p-wave superfluids/superconductors

Nematic phase (Condensate breaks rotational symmetry)

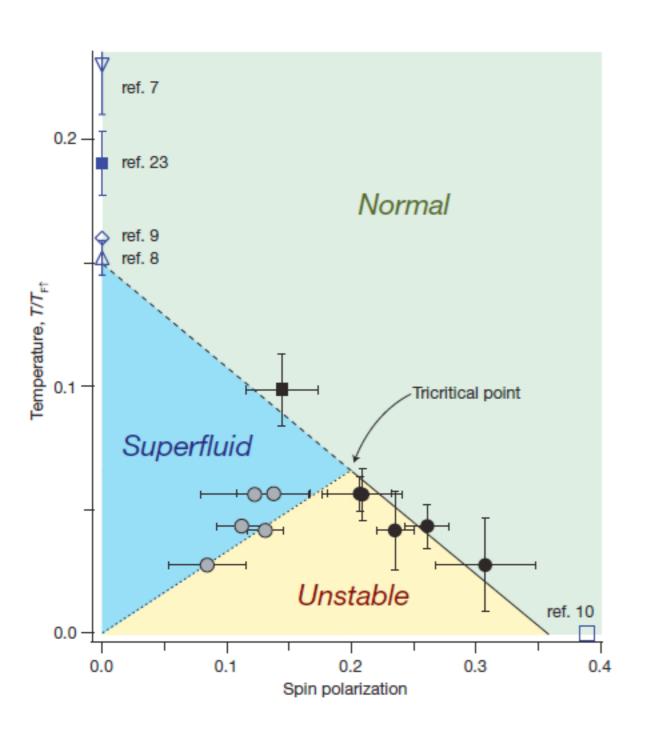
Flexoelectricity (Strain causes polarization)

## Imbalanced mixtures

Contain different number of spin up and spin down particles

How does an imbalance in numbers (spin polarization) affect the superfluid phase transition?

# Superfluidity in imbalanced mixtures



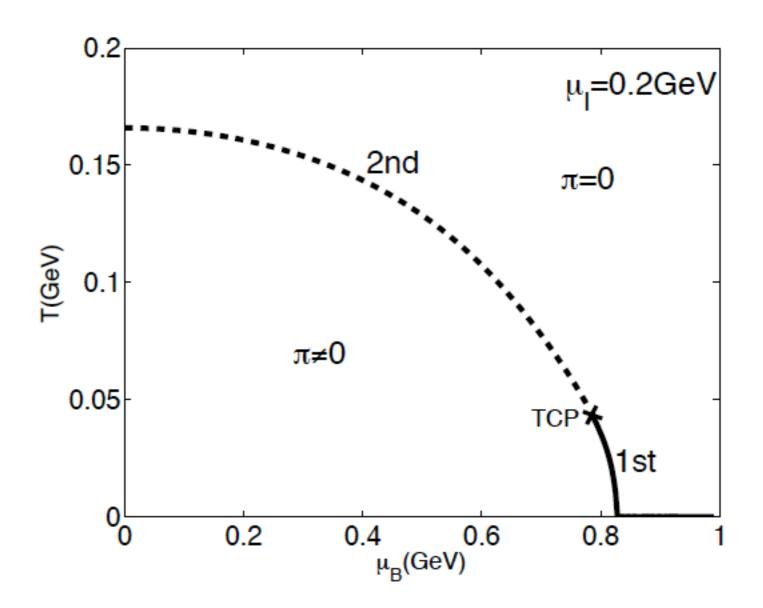
Shin, Schunck, Schirotzek, Ketterle, Nature 2008

Generic phase diagram in condensed matter

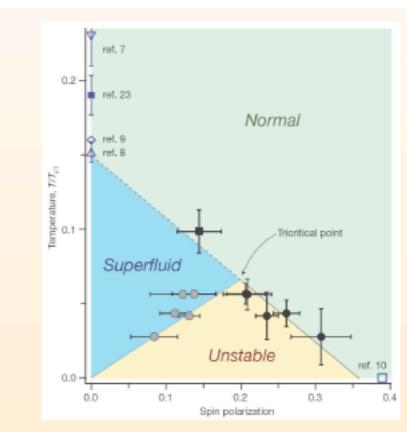
cf. G. Lonzarich's talk

(Sorry for omitting further references...)

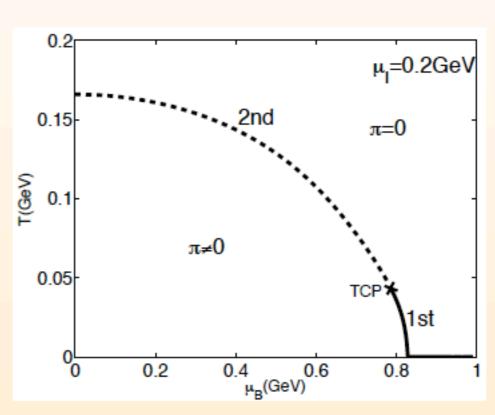
# QCD at finite isospin chemical potential



#### Inbalanced Mixtures and Quantum Phase Transition



Shin, Schunck, Schirotzek, Ketterle, Nature 2008



He, Jin, Zhuang, PRD 2005

Lithium superfluid

QCD at finite isospin density

## There appears to be universal behavior

Can we describe imbalanced mixtures in gauge/gravity duality?

Yes!

Can we obtain a similar phase diagram?

We can, in principle...

We obtain holographic imbalanced mixtures from probe branes in gauge/gravity duality

Additional structure on the gravity side

Lagrangian explicitly known in dual field theory

Holographic superfluid from probe branes



## Reminder: Holographic Superfluids/Superconductors

- Holographic Superconductors from charged scalar in Einstein-Maxwell gravity (Gubser; Hartnoll, Herzog, Horowitz)
  - (Gubser, Flar Gioli, Fler 20g, Flor Owicz)
- p-wave superconductor
  current dual to gauge field condensing

(Gubser, Pufu)

SU(2) Einstein-Yang-Mills model

## s-wave superconductor:

$$\mathcal{L} = R + \frac{6}{L^2} - \frac{1}{4} F^{ab} F_{ab} - V(|\psi|) - |\nabla \psi - iqA\psi|^2$$

## Operator $\mathcal O$ dual to scalar $\psi$ condensing

Herzog, Hartnoll, Horowitz 2008

## p-wave superconductor:

$$S = \frac{1}{2\kappa^2} \int d^4x \left[ R - \frac{1}{4} (F^a_{\mu\nu})^2 + \frac{6}{L^2} \right]$$

Current  $J_3^1$  dual to gauge field component  $A^{1x}$  condensing Gubser, Pufu 2008

## P-wave superconductor from probe branes

Ammon, J.E., Kaminski, Kerner 0810.2316, 0903.1864

- A holographic superconductor with field theory in 3+1 dimensions for which
- the dual field theory is explicitly known
- there is a qualitative ten-dimensional string theory picture of condensation

# This is achieved in the context of adding flavor to gauge/gravity duality

cf. talks by A. O'Bannon, A. Parnachev

Brane probes added on gravity side ⇒ fundamental d.o.f. in the dual field theory (quarks)

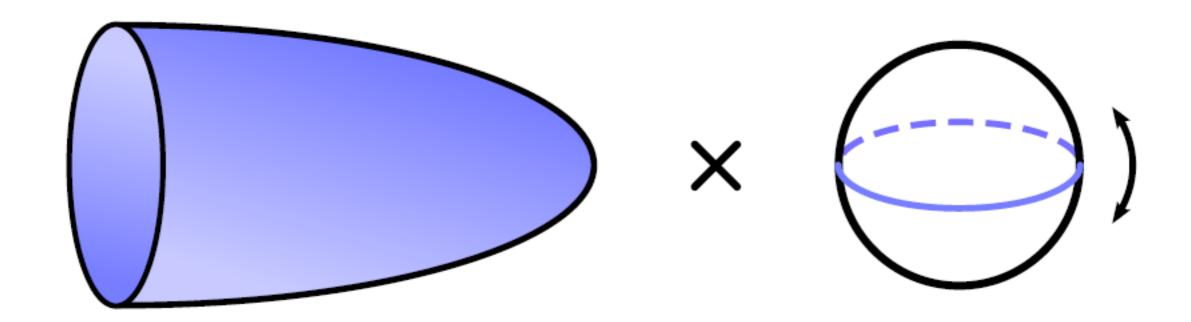
Additional D-branes within  $AdS_5 \times S^5$  or deformed version thereof

## Quarks within Gauge/Gravity Duality

## Adding D7-Brane Probe:

|                 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-----------------|---|---|---|---|---|---|---|---|---|---|
| D3              | X | X | X | X |   |   |   |   |   |   |
| $\overline{D7}$ | X | X | X | X | X | X | X | X |   |   |

Symmetry:  $SO(4) \times SO(2) \sim SU(2) \times SU(2) \times U(1)$ 



Probe brane fluctuations  $\Rightarrow$  Masses of mesons (  $\bar{\psi}\psi$  bound states)

## On gravity side:

## Probe brane fluctuations described by Dirac-Born-Infeld action

$$S_{\text{DBI}} = -T_{D7} \int d^8 \xi \operatorname{Str} \sqrt{|\det(G + 2\pi\alpha' F)|}$$

On field theory side: Lagrangian explicitly known

$$\mathcal{L} = \mathcal{L}_{\mathcal{N}=4} + \mathcal{L}(\psi_q{}^i, \phi_q{}^i)$$

Fluctuations are representations of  $SU(2) \times SU(2) \times U(1)$ 

Turn on finite temperature and isospin chemical potential:

Finite temperature: Embed D7 brane in black hole background

Isospin chemical potential: Probe of two coincident D7 branes

Additional symmetry  $U(2) = SU(2)_I \times U(I)_B$ 

$$A_0^3 = \mu - \frac{\tilde{d}_0^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots, \qquad A_3^1 = -\frac{\tilde{d}_1^3}{2\pi\alpha'} \frac{\rho_H}{\rho^2} + \dots$$

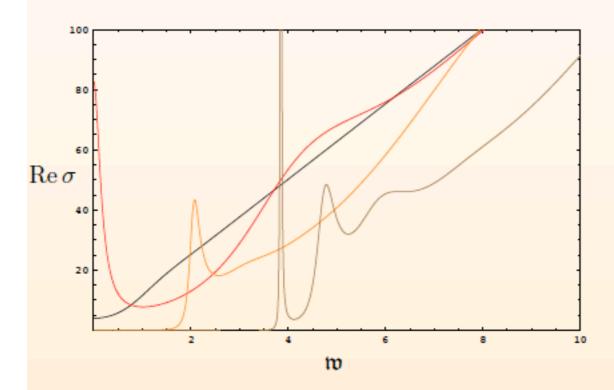
Condensate  $\langle J_3 \rangle$ ,  $J_3 = \bar{\psi}_d \gamma_3 \psi_u + bosons$ 

Calculate correlators from fluctuations

#### Conductivity

Frequency-dependent conductivity  $\sigma(\omega) = \frac{i}{\omega} G^R(\omega)$ 

 ${\cal G}^R$  retarded Green function for fluctuation  $a_2^3$ 



$$\mathfrak{w} = \omega/(2\pi T)$$

 $T/T_c$ : Black:  $\infty$ , Red: 1, Orange: 0.5, Brown: 0.28.

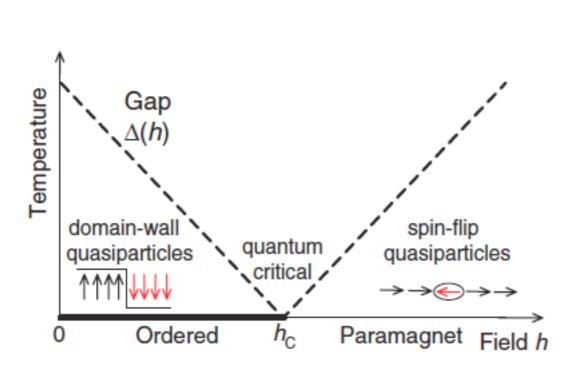
(Vanishing quark mass)

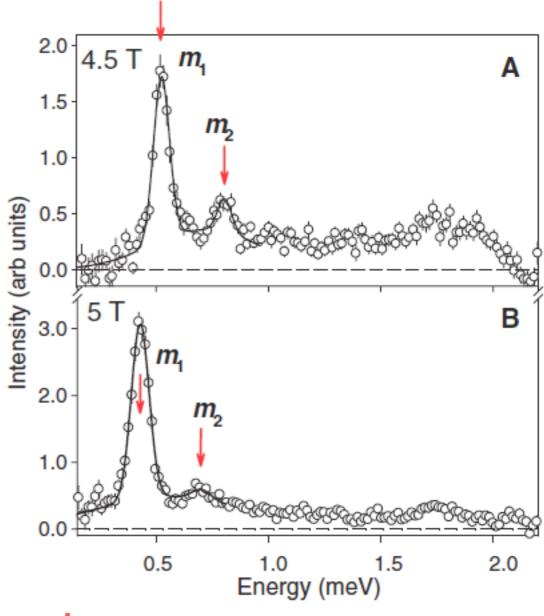
Interpretation: Frictionless motion of mesons through plasma

# Aside: Comparison with Ising chain

Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E 8 Symmetry R. Coldea, et al.

Science 327, 177 (2010)



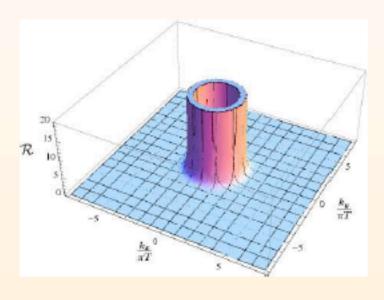


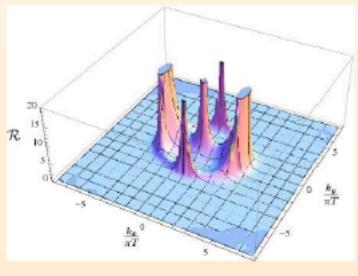
Experimental realization of CFT result (Zamolodchikov 1989)

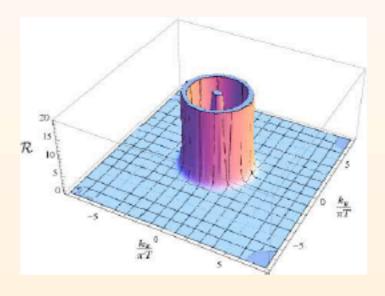
#### **Fermions**

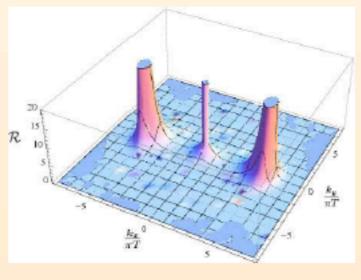
#### Ammon, J.E., Kaminski, O'Bannon 1003.1134

## Use fermionic part of D7 DBI action to study fermionic fluctuations









## Holographic Imbalanced Mixtures

Turn on both isospin and baryon chemical potential

$$U(2) = SU(2)_{I} \times U(I)_{B}$$

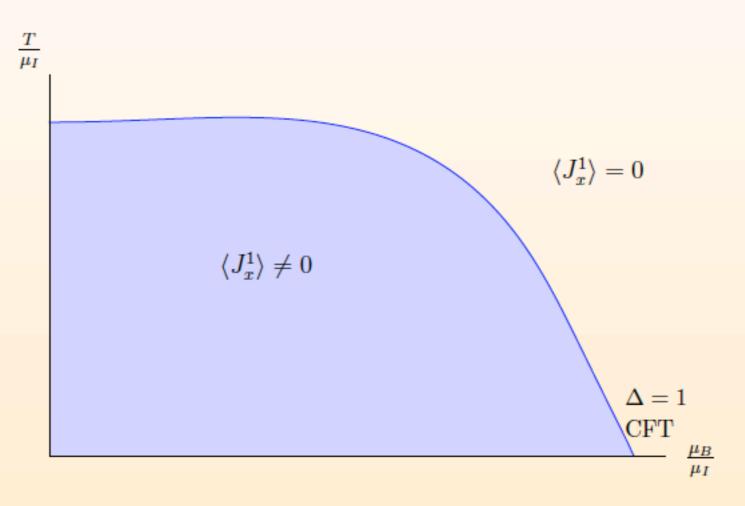
Condensate  $\bar{\psi}_d \gamma_3 \psi_u$  (rho meson)

Increasing  $\mu_B$  turns u into  $ar{u}$  quarks

#### Inbalanced Mixtures and Quantum Phase Transition

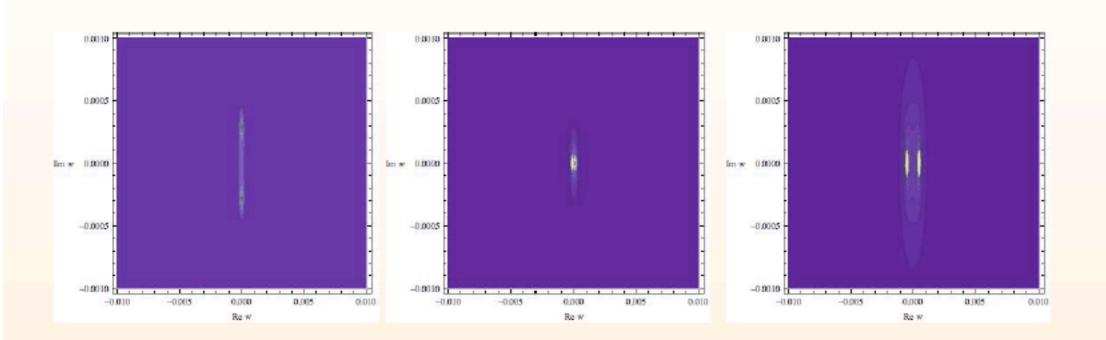
J.E., Graß, Kerner, Ngo 1103.4145

Turn on both isospin and baryon chemical potential in D3/D7 setup



Phase transition second order

#### **Quantum Phase Transition**



### Quantum phase transition

Figure by Patrick Kerner

#### 2. Imbalanced Mixtures

Bottom-up: Including the backreaction

Ammon, J.E., Graß, Kerner, O'Bannon 0912.3515

Einstein-Yang-Mills-Theory with SU(2) gauge group

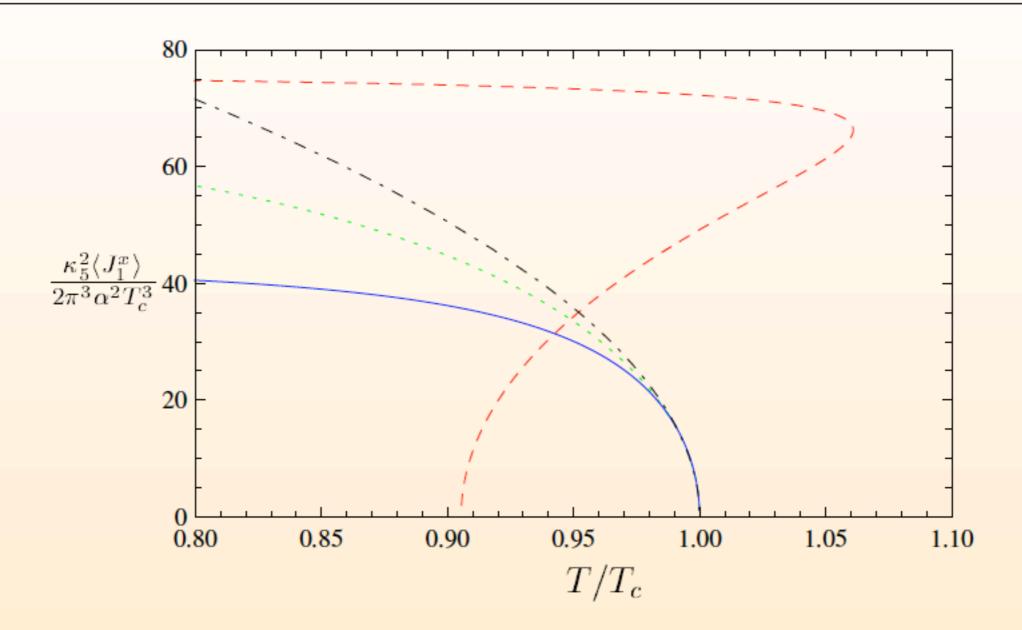
$$S = \int d^5x \sqrt{-g} \, \left[ \frac{1}{2\kappa^2} (R - \Lambda) - \frac{1}{4\hat{g}^2} F^a_{\mu\nu} F^{a\mu\nu} \right]$$

$$\alpha = \frac{\kappa_5}{\hat{g}}$$

 $lpha^2 \propto$  number of charged d.o.f./all d.o.f.

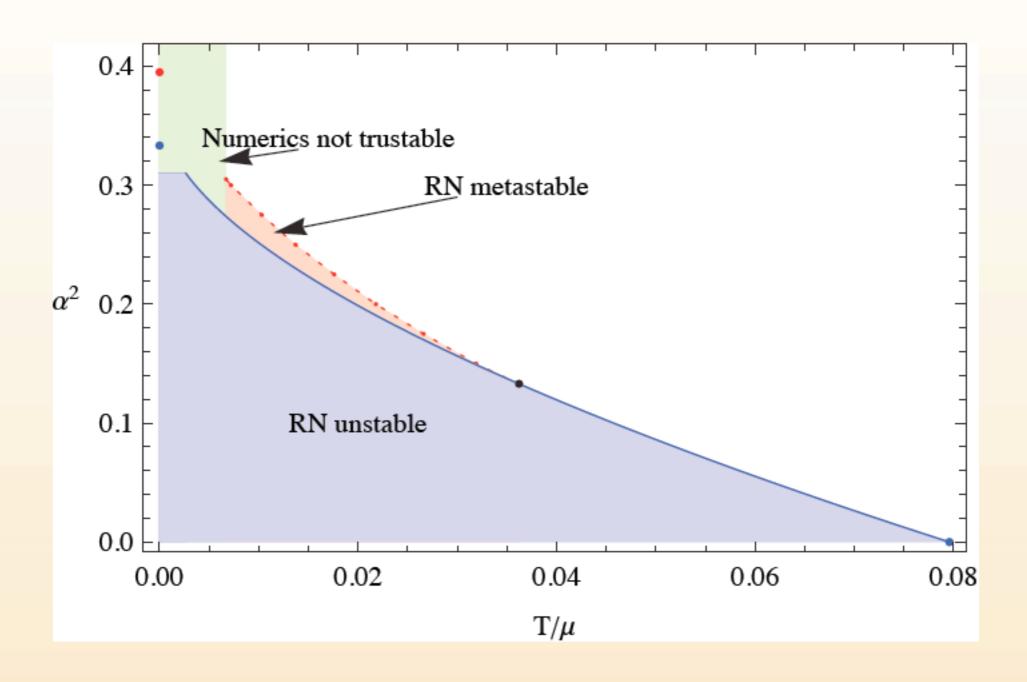
In presence of SU(2) chemical potential, same condensation process as before

#### Phase transition



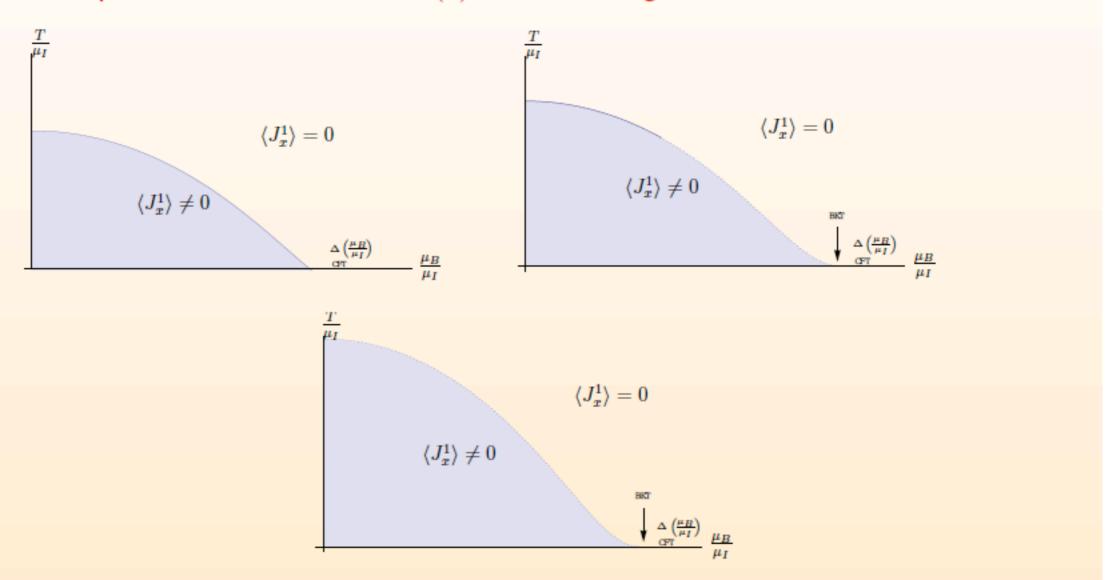
Phase transition becomes first order above  $\alpha_{crit}$ 

### Phase diagram



#### Inbalanced Mixtures and Quantum Phase Transition

#### Example with backreaction: SU(2) Einstein-Yang-Mills Model



# BKT transition in gauge/gravity duality

Jensen, Karch, Son, Thompson 2010 Evans, Gebauer, Kim, Magou 2010

Order parameter scales as  $\exp(-c/\sqrt{T_c-T})$ 

Gravity side: violation of the BF bound in the IR

IR  $AdS_2 \times S^2$  region

Only possible when the two parameters have the same dimension

## D3/D7 vs. backreacted model

#### D3/D7:

Effective IR mass of  $A_x^1/r$  vanishes, independently of  $\mu_B$  BF bound violated along flow, but not in IR Flavor fields directly interact with each other

## Einstein-Yang-Mills:

Effective IR mass depends on  $\mu_B/\mu_I$  BF bound violated in IR  $AdS_2 \times S^2$  region in IR Flavor fields interact with gluon fields

#### 3. Anisotropic shear viscosity

J.E., Kerner, Zeller 1011.5912

Universal result of AdS/CFT:

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

Shear viscosity/Entropy density

Calculated from Kubo formula involving stress tensor two-point function

Kovtun, Policastro, Son, Starinets

Proof of Universality relies on:

Metric fluctuations = helicity two states

#### Anisotropic shear viscosity

J.E., Kerner, Zeller 1011.5912

#### p-wave superconductor:

Fluctuations characterized by their transformation properties under unbroken SO(2):

helicity 2:  $h_{yz}, h_{yy} - h_{zz}$ 

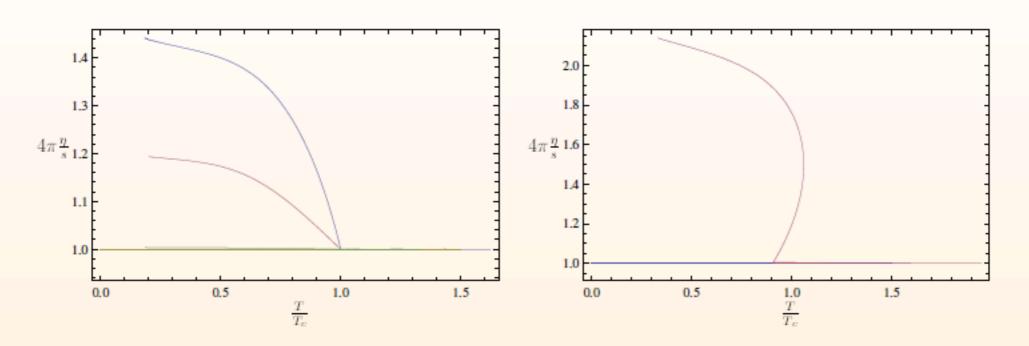
helicity 1:  $h_{yt}, h_{xy}, h_{yr}; a_y^a$ 

 $h_{zy}, h_{xz}, h_{zr}; a_z^a$ 

helicity 0:  $h_{tt}, h_{yy} + h_{zz}, h_{xx}, h_{xt}, h_{xr}, h_{tr}, h_{rr};$ 

 $a_t^a, a_x^a, a_r^a$ .

#### Anisotropic shear viscosity



 $\eta_{yz}/s = 1/4\pi$ ;  $\eta_{xy}/s$  dependent on T and on  $\alpha$ 

Critical behaviour:  $1-4\pi\frac{\eta_{xy}}{s} \propto \left(1-\frac{T}{T_c}\right)^{\beta}$  with  $\beta=1.00\pm3\%$ ,  $\alpha$ -independent

Non-universal behaviour at leading order in  $\lambda$  and N

Critical exponent confirmed analytically in Basu, Oh 1109.4592

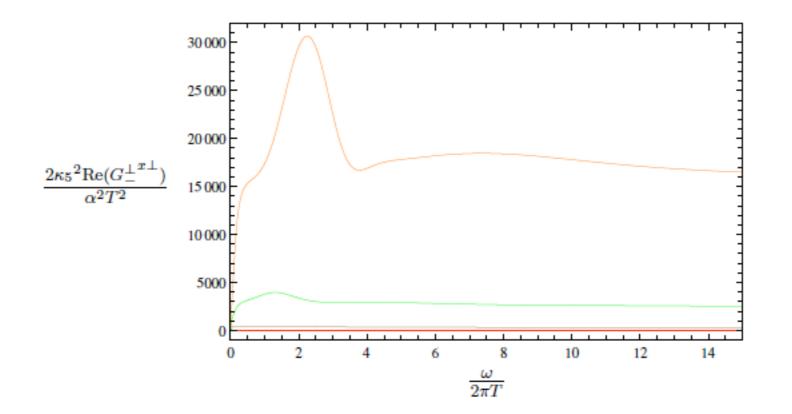
## Flexoelectric Effect

## Nematic crystals:

A strain introduces spontaneous electrical polarization

## In our case:

A strain  $h_{x\perp}$  introduces an inhomogeneity in the current  $\mathcal{J}_1^x$  which introduces a current  $\mathcal{J}_{\pm}^{\perp}$ 



J.E., Kerner, Zeller

## Conclusion

- D3/D7 with finite isospin: Holographic p-wave superconductor with known dual field theory
- Add baryon chemical potential: Imbalanced mixtures
- Ist order transitions possible in backreacted system
- Quantum critical point arising from AdS<sub>2</sub> in IR
- Anisotropic shear viscosity: Non-universal contribution at leading order in N and  $\lambda$
- Flexoelectric effect