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Motivation:

Gauge/gravity duality: New tools for strongly coupled systems

Condensed matter physics: Many timely and interesting questions

How may the two be joined together!?

This talk: Some examples



Examples include:

New holographic quantum critical points

Holographic p-wave superfluids/superconductors
Nematic phase (Condensate breaks rotational symmetry)

Flexoelectricity (Strain causes polarization)



Imbalanced mixtures

Contain different number of spin up and spin down particles

How does an imbalance in numbers (spin polarization) affect the
superfluid phase transition!?
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QCD at finite isospin chemical potential
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Inbalanced Mixtures and Quantum Phase Transition
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There appears to be universal behavior

Can we describe imbalanced mixtures in gauge/gravity duality?

Yes!

Can we obtain a similar phase diagram!?

We can, in principle...



We obtain holographic imbalanced mixtures from

probe branes in gauge/gravity duality

Additional structure on the gravity side

Lagrangian explicitly known in dual field theory

Holographic superfluid from probe branes
= Condensate known explicitly on field theory side




Reminder: Holographic Superfluids/Superconductors

® Holographic Superconductors from charged scalar
in Einstein-Maxwell gravity

(Gubser; Hartnoll, Herzog, Horowitz)

® p-wave superconductor
current dual to gauge field condensing

(Gubser, Pufu)
SU(2) Einstein-Yang-Mills model



s-wave superconductor:
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P-wave superconductor from probe branes

Ammon, J.E., Kaminski, Kerner 0810.23 16, 0903.1864

® A holographic superconductor with field theory in
3+ | dimensions for which

® the dual field theory is explicitly known

® there is a qualitative ten-dimensional string theory
picture of condensation



This is achieved in the context of
adding flavor to gauge/gravity duality

cf. talks by A. O’Bannon, A. Parnachev

Brane probes added on gravity side =
fundamental d.o.f. in the dual field theory (quarks)

Additional D-branes within A4dS: x S° or deformed
version thereof



Quarks within Gauge/Gravity Duality

Adding D7-Brane Probe:
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Probe brane fluctuations = Masses of mesons ( 1) bound states)




On gravity side:
Probe brane fluctuations described by Dirac-Born-Infeld action

Sppt = — 1o /d8€ St.r\/| det(G 4 27’ F)|

On field theory side: Lagrangian explicitly known

L = £N:4 + ﬁ(%i, ¢qz)

Fluctuations are representations of SU(2) x SU(2) x U(1)



Turn on finite temperature and isospin chemical potential:

Finite temperature: Embed D7 brane in black hole background

Isospin chemical potential: Probe of two coincident D7 branes

Additional symmetry U(2) = SU(2), x U(l) ,

Condensate (J3), J3 = ¥gv31¢, + bosons

Calculate correlators from fluctuations



Conductivity

Frequency-dependent conductivity o(w) = fGR(w')

G* retarded Green function for fluctuation a3

100

BOf

1
Reo |

S0F

1
20F |

T'/T,: Black: oc, Red: 1, Orange: 0.5, Brown: 0.28.
(Vanishing quark mass)

Interpretation: Frictionless motion of mesons through plasma

w =w/(2r7T)



Aside: Comparison with Ising chain

Quantum Criticality in an Ising Chain: Experimental Evidence for
Emergent E g Symmetry

R. Coldea, et al.

Science 327, 177 (2010)
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Fermions

Ammon, J.E., Kaminski, O’'Bannon 1003.1134

Use fermionic part of D7 DBI action to study fermionic fluctuations




Holographic Imbalanced Mixtures

Turn on both isospin and baryon chemical potential
U(2) = SU(2), x U(l),
Condensate ¥'gv3%y ( rho meson)

Increasing pp turns u into 4 quarks



Inbalanced Mixtures and Quantum Phase Transition

J.E., Gral3, Kerner, Ngo 1103.4145

Turn on both isospin and baryon chemical potential in D3/D7 setup
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Quantum Phase Transition
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2. Imbalanced Mixtures

Bottom-up: Including the backreaction
Ammon, J.E., Gral3, Kerner, O'Bannon 0912.3515

Einstein-Yang-Mills-Theory with SU(2) gauge group

S = / &’z \/—g [ s(R—A) - AQF;},,F““”

5
Q@ = —
g

a? o number of charged d.o.f./all d.o.f.

In presence of SU(2) chemical potential, same condensation process as before
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Phase transition
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Phase diagram
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Inbalanced Mixtures and Quantum Phase Transition

Example with backreaction: SU(2) Einstein-Yang-Mills Model
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J.E., Grass, Kerner, Ngo |103.4145



BKT transition in gauge/gravity duality

Order parameter scales as exp(—c/\/T, — T
Gravity side: violation of the BF bound in the IR

IR AdSs x S* region

Only possible when the two parameters have the same
dimension



D3/D7 vs. backreacted model

D3/D7:

Effective IR mass of Al /r vanishes,
independently of up

BF bound violated along flow, but not in IR
Flavor fields directly interact with each other

Einstein-Yang-Mills:

Effective IR mass depends on up /g
BF bound violated in IR

AdS, x S? region in IR
Flavor fields interact with gluon fields



3. Anisotropic shear viscosity

J.E., Kerner, Zeller 1011.5912
Universal result of AdS/CFT:

Shear viscosity/Entropy density

Calculated from Kubo formula involving stress tensor two-point function

Kovtun, Policastro, Son, Starinets

Proof of Universality relies on:

Metric fluctuations = helicity two states

36



Anisotropic shear viscosity

J.E., Kerner, Zeller 1011.5912
p-wave superconductor:

Fluctuations characterized by their transformation properties under unbroken
SO(2):

helicity 2 :  h,,, h,,
helicity 1 : hy, ha hyr,
by, By

he"CltY 0: htta hyy + hzz> h.'z::ra h:rta ha:ra htra hrr;

a a _a
a;,a,,a, .
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Anisotropic shear viscosity
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Flexoelectric Effect

Nematic crystals:
A strain introduces spontaneous electrical polarization

In our case:
A strain h,; introduces an inhomogeneity in the current
J¥ which introduces a current J:
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Conclusion

D3/D7 with finite isospin: Holographic p-wave
superconductor with known dual field theory

Add baryon chemical potential: Imbalanced mixtures
| st order transitions possible in backreacted system
Quantum critical point arising from AdS, in IR

Anisotropic shear viscosity:
Non-universal contribution at leading order in N and A

Flexoelectric effect



