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Quantum critical points and phase formation 

1.  At mean-field level, flatten the free energy landscape favouring the original phase.

3.  Create fluctuations that can act as ‘binding bosons’ for new superconductors.

2.  In a metal, induce a mass divergence that favours order.

Classical 
critical 



Sr3Ru2O7: a quantum critical phase diagram 

S.A. Grigera et al., Science 294, 321 (2001)
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The phase in Sr3Ru2O7 forms out of a quantum critical 

background 
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The phase in Sr3Ru2O7 forms out of a quantum critical 

background 

r=rres+ATα

30

T
(K

)

8                140

Field (tesla)

α

2

1

0 .0 6

0 .0 8

0 .1

0 .1 2

0 .1 4

0 .1 6

1 1 0

C
e

l/T
 (

J
/m

o
lR

u
K

2
)

T  (K )



‘Nematic’ properties
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Unusual form of phase formation – the transition is not from a Fermi liquid; 

indeed it happens at a similar temperature to the crossovers to conventional 

Fermi liquids at lower and higher fields.

S.A. Grigera et al., Science 306, 1155 (2004); R.A. Borzi et al., Science 315, 

214 (2007)

Nematic order now widely seen in the vicinity of superconductivity in cuprates

and pnictides.
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Low temperature specific heat  and phase formation

Away from the phase: 

approximately constant as a 

function of T (Fermi liquid).
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Cool into the phase: see rise 

in C/T even below Tc.

Low temperature specific heat  and phase formation
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Background logarithmic divergence 

almost certainly plays a role in 

determining the observed behaviour.
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Extrapolation leads to 

entropy conservation by TC
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N.B.  Entropy conservation is 

achieved by extrapolating the 

logarithmically diverging C/T.  



Weak back-coupling to the lattice is expected in such a picture; a part in 106

effect was observed very recently [C. Stingl, R.S. Perry, Y. Maeno & P. 

Gegenwart, Phys Rev. Lett. 107, 026404 (2011)].

Possible microscopic model for phase: Pomeranchuk

distortion

Appealing because it would give a natural explanation for 4-fold to 2-fold 

symmetry lowering and for the very strong observed disorder dependence.
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Our data

Entropy evolution below Tc for new phases

Data seem consistent with a second order phase transition which does not 

open an energy gap, plus some extra degrees of freedom beyond mean-field. 

A. W. Rost, S. A. Grigera, J. A. N. Bruin, R. S. Perry, D. Tian, S. Raghu, S. A. Kivelson, 
A. P. Mackenzie arXiv:1108.3554;  to appear in Proc Nat Acad Sci USA (2011)



T = 250 mK

Field dependence of the entropy 

Fit:  [(H – Hc)/Hc]
-1

c.f. Hertz-Millis prediction: 

[(H – Hc)/Hc]
-1/3

A.W. Rost et al., Science 325, 1360 (2009)

J. Zaanen, Nature Journal Club Nov 2009

Combining measurements of specific heat and magneto-caloric effect:
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T = 250 mK

Field dependence of the entropy 

Ours does not turn out to be the first observation of this power:

ΔC/T for 

CeRu2Si2 (data 

reported by 

Grenoble and 

Osaka groups 

without comment 

in the 1990s)   





eF
A

F

2


Onsager – Lifshitz 

relation in k space: 

Cu

A

Quantum oscillations – the Onsager-Lifshitz interpretation

Orbit area in real space is quantised such 

that flux Φ = AHz = n Φo

‘whereby we recognize a fundamental unit 

equal to the flux from one of Dirac’s 

hypothetical magnetic poles’

1950 – 70:  Two decades of 

mapping 3D Fermi surfaces 

of ‘simple’ metals.

Bohr-Sommerfeld condition for orbital motion
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dHvA oscillations seen below, above and within the transition region. 

Metamagnetic features

St. Andrews – Cambridge collaboration: J.F. Mercure et al., Phys. Rev. Lett. 

103, 176401 (2009)

The de Haas – van Alphen Effect in Sr3Ru2O7

The Sr3Ru2O7 phase diagram comprises a series of metallic fluids; the basic 

picture is one of itinerant rather than localised magnetism.



Condition to see oscillations: narrow Fermi function
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Consequence: 
if the carriers in 
an exotic metal 
are charged and 
obey Fermi-Dirac 
statistics, the 
oscillatory 
amplitude A(T) 
follows the well-
known Lifshitz-
Kosevich form:

where



Many dHvA frequencies, in 

qualitative agreement with 

known complex Fermi surface. 

No matter what field ranges we 

analyse, the Lifshitz-Kosevich

form for the temperature 

dependence of the oscillations 

is obeyed within our 

experimental error. 

BUT  

Lifshitz-Kosevich

behaviour is observed 

in Sr3Ru2O7
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J.-F. Mercure et al., Phys. Rev. B 81, 235103 (2010).

We do not see the mass associated with 
any frequency show the field 
dependence of the specific heat:

Analysis of our actual data Analysis of simulated data of similar 
signal-to-noise ratio and including a 
mass increase similar to that 
indicated by the specific heat

Numerical tests show that our 
analysis procedure is up to the job.

For one tiny frequency (110 T) we cannot tell whether or not there is a mass 
increase using our current data set – we will be testing this in future. 



Conclusions

• High purity Sr3Ru2O7 has proved to be an unexpected playground for 

the study of phase formation in quantum critical systems.

• The opportunity to study its thermodynamic properties particularly useful.

• The evidence available so far suggests that there is no ground state 

entropy in Sr3Ru2O7.

• More examples of thorough thermodynamic characterisation of phases 

formed directly from quantum critical ‘soup’ are highly desirable.

• Seek more examples of magnetically tuned systems, and investigate 

power law behaviour of entropy vs. field at lower temperatures. 

• Study the relationship between quantum oscillation masses and 

thermodynamic potentials in the vicinity of magnetic QCPs

Future work


