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Entanglement Entropy

e what is entanglement entropy?
general tool; divide guantum system into two parts and use
entropy as measure of correlations between subsystems

 in QFT, typically introduce a (smooth) boundary or entangling
surface . which divides the space into two separate regions

e integrate out degrees of freedom in “outside” region
* remaining dof are described by a density matrix pa

——> calculate von Neumann entropy: Sz = =17 [pa log p 4]

(t = constant)




Entanglement Entropy
e remaining dof are described by a density matrix pa

——> calculate von Neumann entropy: Szr = =17 [pa log pa|

(t = constant

e result is UV divergent!
e must regulate calculation: ¢ = short-distance cut-off

RI—2 R4 d = spacetime dimension
+ co a1 + .-

As
5d—2

o careful analysis reveals geometric structure, eg, S = ¢ + -



Entanglement Entropy
e remaining dof are described by a density matrix pa

——> calculate von Neumann entropy: Szr = =17 [pa log pa|

(t = constant)

e must regulate calculation: 9 = short-distance cut-off

RI—2 R4 d = spacetime dimension

S — Co5d—2 —|— C25d—4 _|_

e leading coefficients sensitive to details of regulator, eg, 0 — 20
e find universal information characterizing underlying QFT in

subleading terms, eg, ¢ — ... +1Og (R/S) + -



More general comments on Entanglement Entropy:

e nonlocal quantity which is (at best) very difficult to measure
—> no accepted experimental procedure

* in condensed matter theory: diagnostic to characterize guantum
critical points or topological phases (eg, quantum hall fluids)

 in guantum information theory: useful measure of qguantum
entanglement (a computational resource)

As,

 black hole microphysics: leading term obeys “area law” s ~ ¢, =

—> suggested as origin of black hole entropy (eg, § ~ ¢p)

(Bombelli, Koul, Lee & Sorkin "86; Srednicki; Frolov & Novikov; Callan & Wilczek; Susskind; . . . .)

 recently considered in AAS/CFT correspondence
(Ryu & Takayanagi "06)



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

r =00
AdS boundary

boundary
conformal field
theory
AdS bulk
spacetime

S(A) =77



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

r =00
AdS boundary

gravitational
potential/redshift

AdS bulk
spacetime |4
AV — (d — 1) dimensional
S(A) = ext ——
ov=x 4G N
N reo

looks like
BH entropy!



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

T = 00
AdS boundary

AdS bulk
spacetime

v

Ay
S(A) = ext ——
(4) s 4Gy

« “UV divergence” because area integral extends to r = oo

= ool!l



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

T = 00
AdS boundary

T:RQ

cut-of. & = L*/ Ry

v

d—1
S(A) = ext ﬂ :L A_Z
oV =% 4GN GN 5d 2
« “UV divergence” because area integral extends to r = oo
« finite result by stopping radial integral at large radius: 7 = Ry
—> short-distance cut-off in boundary theory: § = . /Ry

cut-off surface




(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

AdS boundary

cutof: § = L*/ Ry

v

AV 41 .Az
A) = ext —— ~
S( ) ag}iz 4GN GN Ha—2

central charge (L/Cprames) ™ / X

(counts dof) “Area Law”

cut-off surface




(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

T = 00
AdS boundary

T:RQ

cutof: § = L*/ Ry

cut-off surface

general expression (as desired):

S(A) ~ co(R/6)" 2+ c1(R/STH+---
- +cq_2log(R/J) + - -+ (deven)
_—I—‘cd_z —I—---. (d odd)

universal contributions



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

Ay .
S(A) = ext —— conjecture
ov =x 4GN
Extensive consistency tests:
. L . . , L1 As
1) leading contribution yields “area law S o~ — +
Gn 642
2) recover known results of Calabrese & Cardy é
for d=2 CFT
g c1 C . w/
= —log | ——=sin—
3 5 o C

(also result for thermal ensemble) O — cirenmference



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

Ay .
S(A) = ext —— conjecture
ov —x 4G N
Extensive consistency tests:
Ld—l AZ

1) leading contribution yields “area law” S ~ — +
Gy 6972

. . . . (lots of interesting tests) . . . .

/) connection to central charges of CFT for higher even d
(Hung, RCM & Smolkin, arXiv:1101.5813)

8) derivation of holographic EE for spherical entangling surfaces
(Casini, Huerta & RCM, arXiv:1102.044)
(see also: RCM & Sinha, arXiv:1011.5819)



7) connection to central charges of CFT for higher even d

(Hung, RCM & Smolkin, arXiv:1101.5813)

o trace anomaly in CFT (with even d) defines central charges

_ ¢ a
d=4; T = T s~ gt

]4 — CMVPJCMVPG and E4 — Rw/paR'uypU L 4RMVRM1/ e R2

 universal/logarithmic contribution to entanglement entropy
determined by central charges using trace anomaly, eg,
1 2 gkl ~1 ~1 1brta 1 ta -t b
Suni = log(R/6) %/Ed vV h [C(C"7 Jix 951 — Ko K" + §Ka K; ) —aR]
(Takayanagi & Ryu;Schwimmer & Theisen; Solodukhin)

* R&T proposal for holographic EE exactly reproduces this result

» extends to certain higher curvature theories (eg, GB gravity)
2
S=ext — [ d®xvh[l+AL*R]
\%4

V=% tp (see also: de Boer, Kulaxizi & Parnachev)



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

Ay .
S(A) = ext —— conjecture
ov —x 4G N
Extensive consistency tests:
Ld—l AZ

1) leading contribution yields “area law” S ~ — +
Gy 6972

. . . . (lots of interesting tests) . . . .

/) connection to central charges of CFT for higher even d
(Hung, RCM & Smolkin, arXiv:1101.5813)

8) derivation of holographic EE for spherical entangling surfaces
(Casini, Huerta & RCM, arXiv:1102.044)
(see also: RCM & Sinha, arXiv:1011.5819)



Calculating Entanglement Entropy:
See = —1'r [pa log p4]

 a “standard” approach relies on replica trick, first calculating
Renyi entropy and then taking n —> 1 limit

1
Sp = 1 log T'r [/021] Spr = lim S,

— T n—1

* replica trick involves path integral of QFT on singular n-fold cover
of background spacetime

 problematic in holographic framework
——— produce singularity in dual gravity description

(resolved by quantum gravity/string theory?)
(Fursaev; Headrick)

* need another calculation with simpler holographic translation



Calculating Entanglement Entropy:

« take[CFT]in d-dim. flat space and choosds: = 572

(Casini, Huerta & RCM)

with radius R

—> entanglement entropy: Sy, = =17 [p4 log pa]

 density matrix pa describes physics in entire causal domain D

- conformal mapping: D — H = R, x H%™1



General result for any CFT (Casini, Huerta & RCM)

 take CFT in d-dim. flat space and choose> = S=2 with radius R
—> entanglement entropy: Sy, = =17 [p4 log pa]

H

e conformal mapping: D — H = R; X a1

curvature scale: 1/R temperature: T=1/2TR !

e for CFT: Pthermal = U,OA U_l —_—> SEE — Sthermal




General result for any CFT (Casini, Huerta & RCM)

 take CFT in d-dim. flat space and choose S92 with radius R
—> entanglement entropy: Spr = =17 |[pa logpa]

—> Dby conformal mapping relate to thermal entropy
on H =R x H ! with =~ 1/R? and T=1/21R

SEE — Sthe’r'mal

 note both sides of equality are divergent 5

—> Sihermal SUMS constant entropy density
over infinite volume

« conformal map takes original UV cut-off
to IR cut-off on H9~!

Umar = R/5



General result for any CFT (Casini, Huerta & RCM)

 take CFT in d-dim. flat space and choose S92 with radius R
——> entanglement entropy: Sgr = —17 [pa log pa]

—> Dby conformal mapping relate to thermal entropy
on H =R x H ! with =~ 1/R? and T=1/21R

SEE — Sthe’r'mal

AdS/CFT correspondence:
e thermal bath in CFT = black hole in AdS

SEE — Sthermal — Shorizon

 only need to find appropriate black hole

—> topological BH with hyperbolic horizon
which intersects 0 A on AdS boundary

(Aminneborg et al; Emparan; Mann; . . .




SEE — Sthermal — Shorizon

» desired “black hole” is a hyperbolic foliation of empty AdS space
L? 1
2 2 2 =2 2 2 d—1 .
ds _\z,_Q(dZ /—dt —I—ClZC)CZT + p° dd _>T_ﬁ
* bulk coordinate transformation implements
desired conformal transformation on boundary

)

 “Rindler coordinates” of AdS space:




SEE — Sthermal — Shorizon

 desired “black hole” is a hyperbolic foliation of empty AdS space

L? dp? pP—L% 5 5 i 1
_(p2—L2)_ 72 dr* + p* dX; —

2T R

« apply Wald’s formula (for any gravity theory) for horizon entropy:

oL
_ d—1 AUV A
S = 27T/d ZU\/E 8R,L“/ E €po
2T

= (d/z)v(Hd )

(RCM & Sinha)

where afl contains all of the couplings from the gravity theory

7.(.al/2 J,d4-1
eg, aj= [ (d/2) ¢ for Einstein gravity




SEE — Sthermal — Shorizon

 desired “black hole” is a hyperbolic foliation of empty AdS space

L? dp? pP—L% 5 5 i 1
_(p2—L2)_ 72 AT + p~ dXy _>T_27TR

« apply Wald’s formula (for any gravity theory) for horizon entropy:

oL
_ d—1 AUV A
S = 27T/d ZU\/E 8R,L“/ E €po
2T

= (d/z)v(Hd )

(RCM & Sinha)

where a;; = central charge for “A-type trace anomaly”
for even d

= entanglement entropy defines effective central charge
for odd d



SEE — Sthermal — Shorizon

 desired “black hole” is a hyperbolic foliation of empty AdS space

L? dp? pP—L% 5 5 i 1
_(p2—L2)_ 72 AT + p~ dXy _>T_27TR

« apply Wald’s formula (for any gravity theory) for horizon entropy:.

S‘d—/zF (d/2) adm"\

2 10yd—2
Intersection with standard ds® = 1 n u2 + u” dl
regulator surface: zyin = 0 ﬁ
47r 2
S = a d—2 o

" or (55




SEE — Sthermal — Shorizon

 desired “black hole” is a hyperbolic foliation of empty AdS space

L? dp? pP—L% 5 5 i 1
_(p2—L2)_ 72 dr* + p* dX; —

2T R

« apply Wald’s formula (for any gravity theory) for horizon entropy:.

S‘d—/zF (d/2) adm"\

2 106d—2
Intersection with standard ds* = 1 n u2 +u dQQ
regulator surface: zyin = 0 ﬁ
47.‘. 5 R d—2
S = :‘i - (g) 4o
(d—2)T (57)

\ J
|

“area law” for d-dimensional CFT




SEE — Sthermal — Shorizon

 desired “black hole” is a hyperbolic foliation of empty AdS space

L? dp? pP—L% 5 5 i 1
-2 e AT + p~ dXy —> T=—

2 _
ds” = 2T R

« apply Wald’s formula (for any gravity theory) for horizon entropy:

§= T (d/2) ay V(H) -

du?
2 2 d—2
ds® = T2 + u” df2q
universal contributions:
d_ «
S = -+ (=)2"Ma¥ log(2R/5) + --- forevend

d—1

4+ (5T 2mal A+ - for odd d



SEE — Sthermal — Shorizon

universal contributions:

S = - + (=)2 4a* log(2R/S) + -+ foreven d

d—1

.+ (_)7271'@2 4+ .- forodd d

« discussion extends to case with background: R"9~1 — R x §9-1

o for Einstein gravity, coincides with Ryu & Takayanagi result and
horizon (bifurcation surface) coincides with R&T surface

—> no extremization procedure?!?

 applies for classical bulk theories beyond Einstein gravity

e can imagine calculating “quantum” corrections (eg, Hawking rad)



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

e recall Renyi entropies (close cousin of entanglement entropy)

1 n :
Sn = 1—n 10g I'r [IOA] Ser = 7111_>H11 Sn

 universal contribution (for even d)

Sp = --- + constant x log (R/d) + ---



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

* recall Renyi entropy (close cousin of entanglement entropy)

1 n :
Sn = 1—n 10g I'r [IOA] Ser = 7111_>H11 Sn

 universal contribution (for even d)
C

1
" (Calabrese & Cardy)

o few calculations ford > 2
(Metlitski, Fuertes & Sachdev; Hastings, Gonzalez, Kallin & Melko; . . .)

 standard calculation involves singular n-fold cover of spacetime
—> problematic for translation to dual AdS gravity



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

e turn to Renyi entropy (close cousin of entanglement entropy)

1 n :
Sn = 1—n 10g I'r [IOA] Ser = 7111_>H11 Sn

* recall previous derivation lead to thermal density matrix

o—H/To 1

=U ! U i =
pa Tr [e_H/TO] with  Tp 27 R

n. Tr[e m/T0] €«—— partition function at new
> Tripil = Tr [e=H/To]" temperature, T = Ty/n




(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

e turn to Renyi entropy (close cousin of entanglement entropy)

1 n :
Sn = 1—n 10g I'r [IOA] Ser = 7111_>H11 Sn

e with bit more work, find some convenient formulae:

on 1
1—n T,
where F(T) = logZ(T) and 1y = 1/(27TR) or

To
L 1/ S(T)dT

Sn

F'(To) — F(To/n)]

Renyi entropy thermal entropy
for spherical 2 on hyperbolic space H91

* in holographic framework, need to know topological black hole
solutions for arbitrary temperature



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

* Renyi entropy of CFT for spherical entangling surface:

n 1 1o 1
S, = S(T)dT where Ty = ——
n—lTO/TO/n (T)dT" where Tp = =

* need to know topological black holes for arbitrary temperature

 focus on gravity theories where we can calculate: Einstein,
Gauss-Bonnet, Lovelock, quasi-topological, .....



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

o for example, with Einstein gravity and (boundary) d=4:

S = 4(521) (5+2) (1=72) %V(HS)

where z,, = (1 +/1+ 8n2> /(4n)

()i =5 T (5+ =) (1— =) log(2R/0)

n n

e compare to d=2 result:

Sn = §(1+ 1) log (¢/6) + ---

n
e might suggest simple general form for even d:

(Sn) ynin =€ X f(d,n) x log(2R/9)



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:
o for example, with GB gravity and (boundary) d=4:

(S0, = log(2R/5) 2 L2

nl—zx
2 1—n

(5c — a)z® — (13¢ — ba)
2x? —c+a

(3c—a)x? —c+a

_ 2 _
where O:.CUS—SC a [x Loy _I_lc a
bhe—a \ n n dc—a

+16c

 unfortunately indicates no simple universal form:
C

(Sn)unzv = a X f <d7n7 avtlly e ) X lOg(ZR/é)

o further work (with quasi-topological gravity) shows the universal
coefficient depends on more CFTdata than central charges



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:
o for example, with GB gravity and (boundary) d=4:

(S0, = log(2R/5) 2 L2

nl-—=x
2 1—n

(5c — a)z® — (13¢ — ba)

2x? —c+a

16
" C(Sc— a)r? — c—l—a}

* note despite intimidating expression, results relatively simple:

1.0 n=1
Sn/SEE

0.8

0.6

0.4

0.2

0.8 1.0 1.2 1.4 1.6 1.8 2.0 'C/ a



Phase transitions’?

* Problem: holographic S, goes negative for large n (and large d)

GB gravity: Cgffl*d surface where S, = 0

l \
constraints from

3
demanding boundary

) / theory is causal

1l

s 6 7 8 9 10
* real problem is that in certain parameter regime, entropy of
hyperbolic black hole becomes negative at low temperatures

—> identified the wrong saddle-point

e right saddle-point? new constraint on theory space?



Twist Operators:

. TT(,OZi) evaluated as Euclidean
path integral over n copies of field
theory inserting twist operators
at boundary of region A




Twist Operators:

. TT(,OZ}) evaluated as Euclidean
path integral over n copies of field
theory inserting twist operators
at boundary of region A

e twist operators introduce n-fold
branch cuts where various copies B
of fields talk to each other

twist
operator



Twist Operators:

. Tl“(,OZi) evaluated as Euclidean path integral over n copies of
field theory inserting twist operators at boundary of region A

e twist operators introduce n-fold branch cuts where various
copies talk to each other

 elegant results for d=2, eg, scaling dimension of twist operators

C 1

* in d dimensions, would be (d—2)-dimensional surface operators
but little is known about their properties

(Calabrese & Cardy)



Twist Operators:

e insertion of stress tensor near planar twist operator for CFT in Rd

hn 5a,b
Ta n - 9 Tai n = 0
Twos) = ~F22.  (Tuod

hn (CZ — 1)570 — dnz Uz

(Tijon) = o y

where a,b || 0, and 4,57 L o,
—_—

 consider conformal mapping for spherical entangling surface
—> Euclidean version gives one-to-one map: St x H4 ! — R
— with 3 = n/Ty = 2rRn (n € Z) get n-fold cover of R*
—> have spherical twist operator o,, on S¢ 2



Twist Operators:

« evaluate (1,3 0,) correlator by mapping from thermal bath

(Tap o) = 0172 022 O (1, (Tofm) — Au ) T0)))

\ \ ] \

Y Y '\
creates singularity uniform |
near twist operator  thermal bath anomalous bit

(compare: Marolf, Rangamani & Van Raamsdonk)

 read off h, from short distance singularity

n R%

R (£(T0) — £(To/m))




Twist Operators:

« evaluate (1,3 0,) correlator by mapping from thermal bath

o O (T — Ay T0))

e K

creates singularity uniform |
near twist operator  thermal bath anomalous bit

(compare: Marolf, Rangamani & Van Raamsdonk)

<Ta5 O‘n> = Qd_2

|

o for example, with GB gravity and (boundary) d=4:
n

hn:E(a:Q—l)[c—a—xQ(%—a)]
_ 2 _
where O:a:S—SC a(x_+x>+lc a
bce—a \n noc — a

* no simple universal form can be expected
e again, CFT data beyond central charges also appears



Conclusions:

 AdS/CFT correspondence (gauge/gravity duality) has proven
an excellent tool to study strongly coupled gauge theories

 holographic entanglement entropy is part of an interesting
dialogue has opened between string theorists and physicists
In a variety of fields (eg, condensed matter, nuclear physics, . . .

* potential to learn lessons about issues in boundary theory
eg, readily calculate Renyi entropies for wide class
of theories in higher dimensions

e potential to learn lessons about issues in bulk gravity theory
eg, holographic entanglement entropy may give new
Insight into quantum gravity or emergent spacetime

(eg, van Raamsdonk)

Lots to explore!



