Heavy fermions : condensed matter theory perspective

C. Pépin (IPhT, CEA-Saclay + IIP, Natal)

M. Norman (Argonne) I. Paul (U. Paris VI) A. Benlagra (Dresden) K-S. Kim (Pohang, Korea)

KITP, Oct. 13th 2011

Materials in the Revolutionary Wars.

2

Heavy Fermion Metals: Extreme Limit of Mass Renormalization.

3

Crystal Electric Field effects split the big moments and compete with Hunds rules

- \rightarrow Ferromagnetic fluctuations
- valence fluctuations
- multiple stage screening?

Valence fluctuations at pc

Miyake 99-04

Quantum criticality

vendredi 14 octobre 11

What is critical and what is not ?

Clear NFL in transport and specific heat

Explained by the standard theory of itinerant magnetism ?

Is the anomaly due to Quantum Criticality ?

		Compound	$H_c/P_c/x_c$	$\frac{C_v}{T} \to \infty?$	$\rho \sim T^a$	Reference
Ś		$YbRh_2(Si_{1-x}Ge_x)_2$	$\begin{aligned} x_c &= 0.05 \\ H_c^{\parallel c} &= 0.66T \\ H_c^{\perp c} &= 0.06T \end{aligned}$	$T^{-0.34}$	T	Dresden, Grenoble
		$CeCoIn_5$	$H_c = 5T$	$T^{-\alpha}$	Т	Los Alamos, Grenoble
		$Ce(Cu_{1-x}Au_x)_6$	$x_c = 0.016$	$Log\left(\frac{T_o}{T}\right)$	Т	Karlsruhe
		$CeCu_{6-x}Ag_x$	$x_{c} = 0.2$	$Log\left(\frac{T_o}{T}\right)$	$T^{1.1}$	Gainesville
		$CeNi_2Ge_2$	$P_c = 0$	$Log\left(\frac{T_o}{T}\right)$	$T^{1.4}$	Karlsruhe, Cambridge
\langle		U_2Pt_2In	$P_c = 0$	$Log\left(\frac{T_o}{T}\right)$	Т	Leiden
		$CeCu_2Si_2$	Pc = 0	$Log\left(\frac{T_o}{T}\right)$	$T^{1.5}$	Dresden, Grenoble
		$Ce(Ni_{1-x}Pd_x)Ge_2$	x = 0.065	$\gamma_0 - T^{1/2}$	$ \rho_0 + T^{3/2} $	Los Alamos
		YbAgGe	H = 4T	$Log\left(\frac{T_o}{T}\right)$	Т	Ames, Grenoble
($CeIn_{3-x}Sn_x$	$p_c = 26kbar$?	$T^{1.6}$	Dresden
		U_2Pd_2In	$P_c < 0$?	Т	Leiden
		$CePd_2Si_2$	$P_c > 0$?	$T^{1.2}$	Karlsruhe, Dresden
$\left\{ \right.$		$CeRhIn_5$	$P_c \sim 1.6 GPa$?	Т	Los Alamos, Grenoble
		$CeIn_3$	$P_c > 0$?	$T^{1.5}$	Dresden
		$Ce_{1-x}La_{x}Ru_{2}Si_{2}$	$x_c = 0.1$	no	?	Grenoble
		$U_3Ni_3Sn_4$	$P_c > 0$	no	?	Leiden

Two scenarios

Spin Density Wave

SDW scenario: big Fermi surface at the QCP

Kondo Breakdown

QCP with fractionalization

Theoretical approaches

Low energy properties \longleftrightarrow Universality

Universality

Low energy properties \longleftrightarrow Universality

Low energy, slow, universal part

What is observed around some QCP in heavy fermions

$$\begin{split} \rho(T) &\sim T \ , & & \text{Universal} \\ \chi(T) &\sim T^{-\alpha} \ , \ \text{with} \ \alpha \leq 1 \\ \gamma_p(T) &= \frac{C_P}{T} \sim T^{-\beta} \ , \ \text{with} \ \beta \leq 1 \ . \end{split}$$

Universality

Landau Fermi liquid theory verified by ``all `` conductors above 1D

 $\rho(T) \sim T^2$,

 $\chi(T) \sim \mu_0^2 \rho(\epsilon_F) ,$ $\gamma_{\rm e}(T) = \frac{C_P}{C_P} \sim \frac{k_B^2 \pi^2}{c_F^2}$ Universal exponents

$$\gamma_p(T) = \frac{C_P}{T} \sim \frac{k_B^2 \pi^2}{3} \rho(\epsilon_F) \; .$$

Can we integrate the fermions out of the partition function?

$$\int \phi^4$$
 effective bosonic theory

For example z=2

fermions are mass-less but fast compared to bosons?

$$D^{-1}(q,\Omega) = \frac{|\Omega|}{E_F} + \frac{q^2}{k_F^2}$$

Can we integrate the fermions out of the partition function?

 $\int \phi^4$ effective bosonic theory

For example z=2

 $D^{-1}(q,\Omega) = \frac{|\Omega|}{E_F} + \frac{q^2}{k_F^2}$

fermions are mass-less but fast compared to bosons?

transverse modes are slow! (controlled by boson fluctuations)

Two types of modes cannot be separated at the level of the action

 $\begin{aligned} q_{radial} &\sim T \\ q_{transverse} &\sim \sqrt{T} \end{aligned}$

John A. Hertz.

Hertz-Millis-Moryia-Beal-Monod

The Spin Density Wave Scenario

$$F = M \left(i\alpha\omega + \xi^2 q^2 + \delta \right) M + bM^4 \,.$$

 $\delta = a(T - T_c)$ and the QCP occurs at $T_c = 0$.

$$d_{eff} = d + z$$

$$z = 3$$
 for the ferromagnet ($\alpha = c/q$)
 $z = 2$ for the anti-ferromagnet ($\alpha = c$)

The spin-fermion model

A Abanov, A. Chubukov, RMP 2003 Belitz, Kirkpatrick, Vojta, RMP 05 J Rech, CP, A Chubukov.

•3D Spin Density Wave

Rosch, '98

Ex: CeNi2Ge2 ...

•2D Spin Density Wave into 3D metal

Rosch ('98), Georges, Kotliar, Paul ('03)

Ex: CeCu6Au, or CeCu6Ag ...

No anomalous exponent in spin susceptibility

$$\Delta \rho(T) \sim T$$

 $\gamma_p(T) \sim Log\left(\frac{T_0}{T}\right)$

$$H_{sf} = \sum_{k,\alpha} \epsilon_k c^{\dagger}_{k,\alpha} c_{k,\alpha} + \sum_q \chi^{-1}_{s,0}(q) \mathbf{S}_q \mathbf{S}_{-q}$$
$$+ g \sum_{k,q,\alpha,\beta} c^{\dagger}_{k,\alpha} \boldsymbol{\sigma}_{\alpha\beta} c_{k+q,\beta} \cdot \mathbf{S}_q,$$

$$\chi_{s,0}(q,\Omega) = \frac{\chi_0}{\xi^{-2} + q^2 + A\Omega^2 + O(q^4,\Omega^4)}$$

$$\begin{split} H_{sf} &= \sum_{k,\alpha} \epsilon_k c_{k,\alpha}^{\dagger} c_{k,\alpha} + \sum_q \chi_{s,0}^{-1}(q) \mathbf{S}_q \mathbf{S}_{-q} \\ &+ g \sum_{k,q,\alpha,\beta} c_{k,\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha\beta} c_{k+q,\beta} \cdot \mathbf{S}_q, \end{split}$$

$$\chi_{s,0}(q,\Omega) = \frac{\chi_0}{\xi^{-2} + q^2 + A\Omega^2 + O(q^4,\Omega^4)}.$$

Rech, CP, Chubukov (06)

The bare power counting diverges in $d\leq 3$

$$\begin{split} H_{sf} &= \sum_{k,\alpha} \, \boldsymbol{\epsilon}_k c_{k,\alpha}^{\dagger} c_{k,\alpha} + \sum_q \, \chi_{s,0}^{-1}(q) \mathbf{S}_q \mathbf{S}_{-q} \\ &+ g \sum_{k,q,\alpha,\beta} c_{k,\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha\beta} c_{k+q,\beta} \cdot \mathbf{S}_q, \end{split}$$

d=2

Rech, CP, Chubukov (06)

$$\chi_{s,0}(q,\Omega) = \frac{\chi_0}{\xi^{-2} + q^2 + A\Omega^2 + O(q^4,\Omega^4)}$$

The bare power counting diverges in $d \leq 3$

- neglect vertex corrections
- dressed propagators (self-energy)

$$\alpha \sim \frac{\bar{g}^2}{\gamma v_F^3} \sim \frac{\bar{g}}{NE_F} \ll 1 \qquad \beta \sim \frac{m\bar{g}}{\gamma v_F} \sim \frac{m_B}{Nm} \ll 1.$$

$$\begin{split} H_{sf} &= \sum_{k,\alpha} \epsilon_k c_{k,\alpha}^{\dagger} c_{k,\alpha} + \sum_q \chi_{s,0}^{-1}(q) \mathbf{S}_q \mathbf{S}_{-q} \\ &+ g \sum_{k,q,\alpha,\beta} c_{k,\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha\beta} c_{k+q,\beta} \cdot \mathbf{S}_q, \end{split}$$

$$\chi_{s,0}(q,\Omega) = \frac{\chi_0}{\xi^{-2} + q^2 + A\Omega^2 + O(q^4,\Omega^4)}.$$

d=2

• dressed propagators (self-energy)

$$\alpha \sim \frac{\bar{g}^2}{\gamma v_F^3} \sim \frac{\bar{g}}{NE_F} \ll 1 \qquad \beta \sim \frac{m\bar{g}}{\gamma v_F} \sim \frac{m_B}{Nm} \ll 1.$$

BKV type singularity

Belitz, Vojta, Kirkpatrick(03), Chubukov, Maslov (07) Green, ben Simon(11)

And the culprit is ...

vendredi 14 octobre 11

 $2k_F$ - scattering processes the back -scattering

affecting AFM, nematic, and Ferro

- FS deformed at the hot spots
- anomalous exponents

 $2k_F$ - scattering processes the back -scattering

affecting AFM, nematic, and Ferro

- FS deformed at the hot spots
- anomalous exponents

 $2k_F$ - scattering processes the back -scattering

affecting AFM, nematic, and Ferro

- FS deformed at the hot spots
- anomalous exponents

Metlitski, Sachdev (2010)

16

Recent susy-bosonization in high dimensions

 $-Q, \tilde{\mathbf{n}}$

Hendrik Meier, CP, Efetov

 $-Q, \tilde{\mathbf{n}}$

 K,\mathbf{n}

- Re-summation of the BS processes
- Curvature effects : charge and spin channels are coupled
- Re-summation of all non analyticities for the FL theory

$$\delta\Omega = \frac{\zeta(3)T^3}{\pi v_F^2} \left\{ \frac{\ln^2(1+\gamma_\pi^{\rm I}L)}{L^2} + 3 \frac{\ln^2(1+\gamma_\pi^{\rm II}L)}{L^2} \right\} \qquad \qquad \gamma_I = \gamma_c - 3\gamma_s$$
$$\gamma_{II} = \gamma_c + \gamma_s$$

* K.B. Efetov, C. Pepin, H. Meier, Exact bosonization for an interacting Fermi gas in arbitrary dimensions Phys. Rev. Lett. 103,186403 (2009); PRB 82,235120 (2010), preprint 2011

17

Strong(er) coupling

Senthil, Sachdev, Vojta -PRL2003 PRB 2004

$\operatorname{Ce}: 4f^1$	Yb : $_{4f^{13}}$	$U:5f^2$	
S=1/2 L=3	S=1/2 L=3	S=1 L=3+2	
Spin Orbit : $J = L-S = 5/2$	S O : J= L+S = 7/2	S O : J= L-S = 4	

Ce :
$$4f^1$$
Yb : $4f^{13}$ U : $5f^2$ S=1/2L=3S=1/2L=3S=1Spin Orbit : J= |L-S|= 5/2S O : J= |L+S|= 7/2S O : J= |L-S|= 4

$\operatorname{Ce}: 4f^1$	Yb : $_{4f^{13}}$	$U:5f^2$	
S=1/2 L=3	S=1/2 L=3	S=1 L=3+2	
Spin Orbit : $J = L-S = 5/2$	S O : J= L+S = 7/2	S O : J= L-S = 4	

Spin Liquid

Ce:
$$4f^1$$
Yb: $_{4f^{13}}$ U: $5f^2$ S=1/2L=3S=1/2L=3Spin Orbit : J= |L-S|= 5/2S O : J= |L+S|= 7/2S O : J= |L-S|= 4

Spin Liquid

Spin Liquid

AF singlets

Competition between Coulomb and Kinetic energy

$$H_{Coulomb} = U \sum_{i} n_{f\uparrow} n_{f\downarrow}$$

 $H_{Kinetic} = -\sum_{\langle ij \rangle} f_i^{\dagger} t_{ij} f_j$

Competition between Coulomb and Kinetic energy

$$H_{Coulomb} = U \sum_{i} n_{f\uparrow} n_{f\downarrow}$$

 $H_{Kinetic} = -\sum_{\langle ij\rangle} f_i^{\dagger} t_{ij} f_j$

High Tc

vendredi 14 octobre 11

Competition between Coulomb and Kinetic energy

$$H_{Kinetic} = -\sum_{\langle ij \rangle} f_i^{\dagger} t_{ij} f_j$$

High Tc

Anderson lattice

Breakdown of the Kondo effect associated with a Mott transition on the f-electrons

Zhu, Martin, PNP (09)

breakdown

modulations in Kondo

P. Coleman (Schroder 2000) deconfinement, fractionalization

Burdin, Grempel, Georges (98) breakdown by exhaustion

B. Jones (2010) RG on Kondo Breakdown

Q. Si, Nature (02-) S. Kirchner (06,08) locally quantum critical

Pines, Zhang, Fisk (08) S. Kirchner (06,08) **two fluids model**

Continentino (09) Vekhter + Seo+ CP (10) Paul ,Norman (10) SC quantum critical point

CP, Norman ,Paul (07) selective Mott transition, z=3 regime of fluctuations Senthil, Sachdev ,Vojta (04) model for fractionalization, spin liquid

Breakdown of the Kondo effect associated with a Mott transition on the f-electrons

Zhu, Martin, PNP (09)

breakdown

modulations in Kondo

P. Coleman (Schroder 2000) deconfinement, fractionalization

Burdin, Grempel, Georges (98) breakdown by exhaustion

B. Jones (2010) RG on Kondo Breakdown

Q. Si, Nature (02-) S. Kirchner (06,08) locally quantum critical

Pines, Zhang, Fisk (08) S. Kirchner (06,08) **two fluids model**

Continentino (09) Vekhter + Seo+ CP (10) Paul ,Norman (10) SC quantum critical point

CP, Norman ,Paul (07) selective Mott transition, z=3 regime of fluctuations Senthil, Sachdev ,Vojta (04) model for fractionalization, spin liquid

Doping plays the role of pressure

Is there a spin liquid on the left of T*?

Differentiate the scenarios where the KB is tight to AFM transition (Si et al.) from the ones where the KB is alone

Paglione 04

vendredi 14 octobre 11

Pressure induced superconductivity in 115 series

Multiple Energy Scales in Quantum Critical Regime

Finite energy scales T_{SF} , T_{QP} in QC regime.

J. Paulione et al. cond-mat/0605124

Finite T_{FL} at QCP from resistivity. Courtesy J. Flouquet (unpublished)

Finite low-energy scale near Kondo breakdown QCP

Conclusions

• Strong experimental evidence for anomalous quantum criticality in HF compounds

• Breakdown of the conventional techniques which integrate out the fermions for (almost all?) models below d=3.

• Fractionalization-deconfinement and emerging spin liquid represent the state of the art to explain the data

• Better theories (and methods) needed ... for example Ads/CMT or ... a new bosonization technique ?