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Points Critiques Quantiques (PCQs)
dans les systèmes d’électrons  en 

corrélations fortes.

Catherine Pépin
Service de Physique Théorique
CEA-Saclay

• PCQs dans les supraconducteurs à haute température 
critiques
       LLB,SPEC,SPhT CEA-Saclay

• PCQs dans les composés à fermions lourds
       SPSMS, Grenoble

        SPhT, Saclay
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Materials in the 
Revolutionary Wars.!

"For God's sake and our 
countries- send copper 
bottomed ships to relieve 
the foul and crippled 
ones."!

1779: end of war of !
independence.!

Copper plated Hull!

IRON BOLTS  : RAPIDLY  CORRODED!

courtesy P. Coleman
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Heavy Fermion Metals:  Extreme Limit of Mass Renormalization.  
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Nakatsuji 03Jaccard 03

Multiple Kondo screeningValence fluctuations at pc

Ce : Yb : U :

S=1/2        L=3
Spin Orbit : J= |L-S|= 5/2

S=1/2      L=3
S O : J= |L+S|= 7/2

S=1        L=3+2
S O : J= |L-S|= 4

Crystal Electric Field effects split the big moments and compete with Hunds rules

Ferromagnetic fluctuations
valence fluctuations
multiple stage screening ?

Miyake 99-04
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Fermi Liquid  ? 

T 

x 

AF 

Spin Gap 
Pair fluctuations? 

T  - ONLY ENERGY SCALE 

SC 

QCP  ?  
Do we understand QCPs 
where the order parameter is uncontraversial? 

High Tc: QCP may play 

a vital role in setting the 

normal state properties. 

Quantum criticality
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Custers et al (CP), Nature 2003

magnetic order
heavy Fermi liquid

Resistivity linear !
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Lhoneysen, (1999)
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 What is critical and what is not ?

Clear NFL in transport and
     specific heat
 

Is the anomaly due to 
Quantum Criticality ?

Explained by  the standard
theory of itinerant magnetism ?   

Compound Hc/Pc/xc
C

v

T ! 1? ⇢ ⇠ T a Reference

Y bRh2(Si1�xGex)2

xc = 0.05

H
kc
c = 0.66T

H?c
c = 0.06T

T�0.34 T Dresden, Grenoble

CeCoIn5 Hc = 5T T�↵ T Los Alamos, Grenoble

Ce(Cu1�xAux)6 xc = 0.016 Log
�
T
o

T

�
T Karlsruhe

CeCu6�xAgx xc = 0.2 Log
�
T
o

T

�
T 1.1 Gainesville

CeNi2Ge2 Pc = 0 Log
�
T
o

T

�
T 1.4

Karlsruhe, Cambridge

U2Pt2In Pc = 0 Log
�
T
o

T

�
T Leiden

CeCu2Si2 Pc = 0 Log
�
T
o

T

�
T 1.5 Dresden, Grenoble

Ce(Ni1�xPdx)Ge2 x = 0.065 �0 � T 1/2 ⇢0 + T 3/2 Los Alamos

Y bAgGe H = 4T Log
�
T
o

T

�
T Ames, Grenoble

CeIn3�xSnx pc = 26kbar ? T 1.6 Dresden

U2Pd2In Pc < 0 ? T Leiden

CePd2Si2 Pc > 0 ? T 1.2 Karlsruhe, Dresden

CeRhIn5 Pc ⇠ 1.6GPa ? T Los Alamos, Grenoble

CeIn3 Pc > 0 ? T 1.5 Dresden

Ce1�xLaxRu2Si2 xc = 0.1 no ? Grenoble

U3Ni3Sn4 Pc > 0 no ? Leiden

(a) New data[17] show a stronger divergence at lower temperatures, and � ⇠ A�B
p
T at interme-

diate temperatures.

(b) At low temperatures, � diverges more rapidly than Log
⇣

T
T
o

⌘
[16].

There are several heavy fermion systems that have been tuned to an antiferromag-

netic quantum critical point. Two stoichiometric heavy fermion systems, CeNi2Ge2[12],

U2Pt2In[20] lie almost at a quantum critical point at ambient pressure, whilst the com-

pounds CeCu6[11, 15] and Y bRh2Si2[16] can be tuned to a quantum critical point with a

tiny amount of chemical pressure, applied by doping. There is a growing list of antiferromag-

5
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Two scenarios

AF

T

x

SDW scenario: 
big Fermi surface at the QCP

CeNi2Ge2

Spin Density Wave

HF
AF

E*

T

x

QCP with fractionalization

YbRh2Si2

HF

Kondo Breakdown

CeCoIn5
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Theoretical approaches
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UV High energy physics – microscopic hamiltonian

IR
Low energy, slow, universal part

Integrate out the “fast” 
degrees of freedom

Low energy properties Universality
Universality

vendredi 14 octobre 11



UV High energy physics – microscopic hamiltonian

IR
Low energy, slow, universal part

Integrate out the “fast” 
degrees of freedom

Low energy properties Universality

Landau Fermi liquid theory  verified by
``all ‘’ conductors above 1D

Universal
exponents

What is observed around some QCP
 in heavy fermions

Universal
Too!

Universality
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effective bosonic theory

Can we integrate the fermions out of the partition function?

fermions are mass-less but fast
compared to bosons? fermions

bosons

k

For example z=2
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effective bosonic theory

Can we integrate the fermions out of the partition function?

transverse modes are slow!
(controlled by boson fluctuations)

Two types of modes cannot be
separated at the level of 

the action

k-kF ~ T
radial modes are fast

fermions are mass-less but fast
compared to bosons? fermions

bosons

k

For example z=2
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John A. Hertz.

The Spin Density Wave Scenario

r

S

q

1/τ

 Hertz-Millis-Moryia-Beal-
Monod
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The spin-fermion model

•3D Spin Density Wave

Q
Rosch, ‘98

Ex: CeNi2Ge2 ...

•2D Spin Density Wave into 3D metal Rosch (’98), Georges, Kotliar, Paul (’03)

Ex: CeCu6Au, or CeCu6Ag ...
No anomalous exponent 
in spin susceptibility

hot regions

A Abanov,A. Chubukov, RMP 2003
Belitz, Kirkpatrick, Vojta, RMP 05
J Rech, CP, A Chubukov.
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 Eliashberg theory around itinerant 
ferromagnetism, or U(1) gauge 
theory coupled to  matter             

!k = vFk! +
k!

2

2mB
. "2.2#

Here k is the momentum deviation from kF, the parallel and
perpendicular components are with respect to the direction
along the Fermi surface at kF, mB is the band mass, the Fermi
velocity vF=kF /m, and for a circular Fermi surface one has
m=mB.

One can then re-cast the original model of fermion-
fermion interaction into an effective low-energy fermion-
boson model. Consider for definiteness that the system is
close to a ferromagnetic QCP. Then the low-energy degrees
of freedom are fermions $with the propagator given by Eq.
"2.1#% and long-wavelength collective spin excitations whose
propagator "the spin susceptibility# is analytic near q=0 and
"=0:

#s,0"q,"# =
#0

$−2 + q2 + A"2 + O"q4,"4#
. "2.3#

Here A is a constant, and $ is the correlation length, which
becomes infinite at the QCP. We prove in the next section
that the "2 term does not play any role in our analysis, and
we therefore neglect it for now and approximate the above
bare propagator by the static one #s,0"q#. The model can then
be described by the phenomenological spin-fermion Hamil-
tonian:

Hsf = &
k,%

!kck,%
† ck,% + &

q
#s,0

−1"q#SqS−q

+ g &
k,q,%,&

ck,%
† !%&ck+q,& · Sq, "2.4#

where != "'x ,'y ,'z# are Pauli matrices. Here Sq with q
() /vF are vector bosonic variables, and g is the effective
fermion-boson interaction. For convenience, we incorporated
the fermionic residue Z0 into g.

To illustrate how this effective Hamiltonian can, in prin-
ciple, be derived from the microscopic model of interacting
conduction electrons, we consider a model in which the elec-
trons interact with a short-range four-fermion interaction
U"q# and assume that only the forward scattering is relevant
$U"0#=U%:

H = &
k,%

!kck,%
† ck,% +

1
2&

q
U &

k,k!,%,&

ck,%
† ck+q,%ck!&

† ck!−q,&.

"2.5#

In this situation, the interaction is renormalized indepen-
dently in the spin and in the charge channels.31 Using the
identity for the Pauli matrices !%& ·!*+=−+%&+*++2+%++&*,
one can demonstrate31 that in each of the channels, the
random-phase approximation "RPA# summation is exact, and
the fully renormalized four-fermion interaction U%&,*,

full "q# is
given by

TABLE I. List of the various parameters used in the text, their expression before the rescaling in N, and
the reference equation where it is defined in the text.

Expression Definition Eq.

vF Fermi velocity "2.2#
m bare quasiparticle mass, m=kF /vF "2.2#
m* effective "renormalized# quasiparticle mass "4.8#
mB band mass, determines the curvature of the Fermi

surface
"2.2#

g spin-fermion coupling constant "2.4#
$ ferromagnetic correlation length "2.3#
#0$2 value of the spin susceptibility at q=0 "2.3#
N number of fermionic flavors
ḡ=g2#0 effective four-fermion interaction "4.6#
*= Nmḡ

-vF
Landau damping coefficient "4.5#

.= 3ḡ$
4-vF

dimensionless coupling constant, it measures the
mass enhancement: .= m*

m −1
"4.6#

/0= 3'3ḡ3

8-3*vF
3 ( ḡ2

NEF
frequency up to which 0"/# dominates over / in

the fermionic propagator
"4.9#

/Max='*vF
3 ('NḡEF frequency up to which the fermionic and the

bosonic mass shells are well separated
"5.3#

%= ḡ2

*vF
3 ( ḡ

NEF
small parameter, measuring the slowness of the
bosonic modes compared to the fermionic ones;

the same small parameter justifies the low-energy
description

"5.1#

&=
mB

mN
small parameter related to the curvature of the

fermionic dispersion
"5.13#

RECH, PÉPIN, AND CHUBUKOV PHYSICAL REVIEW B 74, 195126 "2006#
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4-vF

dimensionless coupling constant, it measures the
mass enhancement: .= m*

m −1
"4.6#

/0= 3'3ḡ3
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a)
q,Ω

b)
k, ω

c)
k, ω

FIG. 1: a) Polarization bubble b) One-loop fermionic self-
energy c) Two-loop fermionic self-energy.

Sq, one recasts (2.8) into Eq. (2.4) with:















g = U a
2

χ0 = 2 k2

F
Ua2

ḡ = g2χ0 = (U/2)k2
F

ξ−2 = k2

F
a2

(

2π
mU − 1

)

(2.9)

The QCP is reached when mU/2π = 1, i.e., ξ−2 = 0.
This coincides with the Stoner criterion for a ferromag-
netic instability [34].

We emphasize that the bosonic propagator in Eq. (2.3)
does not contain the Landau damping term. This is be-
cause we only integrated out the high-energy fermions,
whereas the Landau damping of a collective mode of en-
ergy Ω comes from fermions of energy ω < Ω, and can
only be generated within the low-energy theory. The dy-
namics of both the bosonic fields Sq and the fermionic
c and c† is determined self-consistently by treating both
fluctuations on equal footing.

To put under control the computations carried out
later in the paper, it is necessary to extend the model
by introducing N identical fermion species, while keep-
ing the SU(2) spin symmetry. The Hamiltonian (2.4)
can then be rewritten as:

Hsf = Hf + Hb + Hint where

Hf =
∑

k,j,α

εkc†k,j,αck,j,α

Hb =
∑

q

χ−1
s,0(q)Sq · S−q

Hint = g
∑

k,q,j,α,β

c†k,j,ασαβck+q,j,β · Sq, (2.10)

where the index j = 1 . . .N labels the fermionic species.
We use the spin-fermion Hamiltonian of Eq. (2.10)

as the starting point of our analysis. In the case of a
QCP in the charge channel, or a ferromagnetic instability
with Ising symmetry, the bosonic vector field S becomes
a scalar field designated as φ. The interacting term is also
modified, the Pauli matrices being replaced by δαβ for the
interaction with charge fluctuations, and by σZ

αβ in the
Ising case. The corresponding interaction Hamiltonians
are:

{

HCharge
int = g

∑

k,q,j,α,β c†k,j,αδαβck+q,j,βφq

HIsing
int = g

∑

k,q,j,α,β c†k,j,ασZ
αβck+q,j,βφq

(2.11)

III. DIRECT PERTURBATION THEORY

In this section we compute the fermionic and bosonic
self-energies for the model presented in Eq. (2.4) using a
perturbation expansion around non-interacting fermions.
Our goal here is three-fold: to relate the Landau damping
coefficient to the fermion-boson coupling constant g, to
distinguish between Σ(ω) and Σ(k) and to demonstrate
the importance of the curvature of the Fermi surface.

We evaluate the self-energy in this section up to two-
loop order. We verified that to this order, there is no
qualitative difference between the quantum critical point
in the spin or in the charge channel. We then restrict our
presentation to the spin-fermion model near a ferromag-
netic QCP.

A. Bosonic self-energy: the Landau damping term

The full bosonic propagator depends on the self-energy
Π(q,Ω) according to:

χs(q,Ω) =
χ0

ξ−2 + q2 + Π(q,Ω)
. (3.1)

At the lowest order in the spin-fermion interaction, the
bosonic self-energy is given by the first diagram in Fig.
1, and reads:

Π(q,Ω) = 2Nḡ

∫

d2k dω

(2π)3
G(k, ω) G(k+q, ω+Ω). (3.2)

The curvature of the fermionic dispersion does not af-
fect much the result of this computation as it only leads
to small corrections in q/mBvF . Neglecting the quadratic
term in the fermionic propagators, we introduce the an-
gle θ defined as εk+q = εk + vF q cos θ and perform the
integration over εk, which gives us:

Π(q,Ω) = i
Nḡm

2π2

∫ +∞

−∞
dω (θ(ω + Ω) − θ(ω))

×
∫ 2π

0
dθ

1

iΩ− vF q cos θ

=
Nmḡ

π

|Ω|
√

(vF q)2 + Ω2
. (3.3)

At the QCP, the bosonic mass-shell corresponds to the
region of momentum and frequency space for which the
terms in the inverse propagator are of the same order, i.e.
near a mass shell q and Ω satisfies Π(q,Ω) ∼ q2. It follows
that, at the QCP, near the bosonic mass shell, vF q/Ω ∼
vF (mḡv2

F /Ω2)1/3 $ 1 at small enough frequency, so that
vF q is the largest term in the denominator of Π(q,Ω).
The expression of the bosonic self-energy then reduces
to:

Π(q,Ω) = γ
|Ω|
q

, (3.4)
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FIG. 1: a) Polarization bubble b) One-loop fermionic self-
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The QCP is reached when mU/2π = 1, i.e., ξ−2 = 0.
This coincides with the Stoner criterion for a ferromag-
netic instability [34].

We emphasize that the bosonic propagator in Eq. (2.3)
does not contain the Landau damping term. This is be-
cause we only integrated out the high-energy fermions,
whereas the Landau damping of a collective mode of en-
ergy Ω comes from fermions of energy ω < Ω, and can
only be generated within the low-energy theory. The dy-
namics of both the bosonic fields Sq and the fermionic
c and c† is determined self-consistently by treating both
fluctuations on equal footing.

To put under control the computations carried out
later in the paper, it is necessary to extend the model
by introducing N identical fermion species, while keep-
ing the SU(2) spin symmetry. The Hamiltonian (2.4)
can then be rewritten as:

Hsf = Hf + Hb + Hint where

Hf =
∑

k,j,α

εkc†k,j,αck,j,α

Hb =
∑

q

χ−1
s,0(q)Sq · S−q

Hint = g
∑

k,q,j,α,β

c†k,j,ασαβck+q,j,β · Sq, (2.10)

where the index j = 1 . . .N labels the fermionic species.
We use the spin-fermion Hamiltonian of Eq. (2.10)

as the starting point of our analysis. In the case of a
QCP in the charge channel, or a ferromagnetic instability
with Ising symmetry, the bosonic vector field S becomes
a scalar field designated as φ. The interacting term is also
modified, the Pauli matrices being replaced by δαβ for the
interaction with charge fluctuations, and by σZ

αβ in the
Ising case. The corresponding interaction Hamiltonians
are:

{

HCharge
int = g

∑

k,q,j,α,β c†k,j,αδαβck+q,j,βφq

HIsing
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coefficient to the fermion-boson coupling constant g, to
distinguish between Σ(ω) and Σ(k) and to demonstrate
the importance of the curvature of the Fermi surface.

We evaluate the self-energy in this section up to two-
loop order. We verified that to this order, there is no
qualitative difference between the quantum critical point
in the spin or in the charge channel. We then restrict our
presentation to the spin-fermion model near a ferromag-
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1, and reads:
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The curvature of the fermionic dispersion does not af-
fect much the result of this computation as it only leads
to small corrections in q/mBvF . Neglecting the quadratic
term in the fermionic propagators, we introduce the an-
gle θ defined as εk+q = εk + vF q cos θ and perform the
integration over εk, which gives us:
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At the QCP, the bosonic mass-shell corresponds to the
region of momentum and frequency space for which the
terms in the inverse propagator are of the same order, i.e.
near a mass shell q and Ω satisfies Π(q,Ω) ∼ q2. It follows
that, at the QCP, near the bosonic mass shell, vF q/Ω ∼
vF (mḡv2

F /Ω2)1/3 $ 1 at small enough frequency, so that
vF q is the largest term in the denominator of Π(q,Ω).
The expression of the bosonic self-energy then reduces
to:
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C. Summary

We have shown in this section that there are two con-
ditions for the validity of the Eliashberg theory that one
can recast as the smallness of two parameters:

α ∼
ḡ2

γv3
F

∼
ḡ

NEF
" 1 β ∼

mḡ

γvF
∼

mB

Nm
" 1.

(5.34)
The first condition is quite generic for a low-energy

theory since it requires that the fermion-fermion inter-
action mediated by the exchange of a boson should be
smaller than the Fermi energy. Otherwise, the physics
is not restricted to the vicinity of the Fermi surface any-
more. The parameter α plays the same role as the Migdal
parameter for the electron-phonon interaction: it sets the
condition that fermions are fast excitations compared to
bosons. In the scattering processes that are small in α,
fermions are forced by the interaction to vibrate at fre-
quencies near the bosonic mass shell.They are then far
from their own resonance and thus have a small spectral
weight.

However, the condition α " 1 is not sufficient to
construct a fully controllable perturbation expansion
around the non-Fermi liquid state at the QCP. In spa-
tially isotropic systems there exist vertex corrections for
which the external momentum has a component on the
fermionic mass-shell. These corrections don’t contain α.
However, these corrections are sensitive to the curvature
of the Fermi surface, and are small if β is small which can
be achieved either by imposing mB " m or by extending
the theory to a large number N of fermionic flavors.

A word of caution. In evaluating the renormalization
of the static vertex, we silently assumed that

√
α " β,

i.e., ḡ/EF < (mB/m)2/N . At very large N , this is no
longer valid. For this situation, i.e., when β "

√
α, our

estimates show that the static vertex is even smaller than√
α.
Finally, the pairing vertex in the Cooper channel stays

of order O(1), signaling the possibility of a pairing insta-
bility close to the quantum critical point. Nevertheless,
we assume, based on explicit calculations worked out in
[8], that the quantum critical behavior extends in the pa-
rameter space to a region where the superconductivity is
not present.

VI. INSTABILITY OF THE FERROMAGNETIC
QUANTUM CRITICAL POINT

We found that the Eliashberg theory for fermions in-
teracting with gapless long-wavelength bosons is stable
and controlled by two small parameters. We verified this
by calculating the fermionic self-energy in a two-loop ex-
pansion around the Eliashberg solution

One may wonder whether the same conclusions hold
for the bosonic self-energy as well. In particular, what
are the corrections to the static susceptibility χs(q, 0)?

Naively one could assume that they are unimportant and
do not change the bare q2 behavior of the inverse bosonic
propagator at the QCP.

For a ferromagnetic SU(2) QCP, for which the mass-
less bosons are spin fluctuations, we show in this section
that the corrections to the static spin susceptibility are
non-analytic: they scale like q3/2, and do not contain any
pre-factor except for a proper power of kF . Such terms
obviously overshadow the regular q2 of the bare suscep-
tibility at small enough momenta. These terms therefore
belong to Eliashberg theory, which has to be extended to
incorporate them.

The physics behind the q3/2 term in χ(q, 0) at a
ferromagnetic QCP is, by itself, not directly related
to criticality: far away from the QCP, the spin sus-
ceptibility also contains negative, non-analytic |q| term
[24, 25, 26, 27, 28, 29]. This term gradually evolves as
the correlation length ξ increases, and transforms into
the q3/2 term at the QCP. Both these non-analyticities,
at and away from the QCP, emerge because the boson-
mediated interaction between fermions contain a long-
range dynamic component, generated from the Landau
damping.

For charge fluctuations, the q3/2 terms appear in the
individual diagrams for the susceptibility but cancel out
in the full formula for χ(q,Ω). We discuss the physical
origin of the difference between spin and charge suscep-
tibilities in the next section.

One of the reasons why the non-analyticity of the static
spin susceptibility at the QCP has not been analyzed
much earlier is because it was widely believed that an
itinerant fermionic system near a ferromagnetic QCP is
adequately described by a phenomenological 2 + 1D φ4

bosonic theory (in our case, the role of φ is played by
the vector field S) with the dynamic exponent z = 3 and
a constant pre-factor for the φ4 term [1]. In dimensions
d ≥ 4 − z = 1, the model lies above its upper critical
dimension and the φ4 term is simply irrelevant.

In this section, we derive the effective φ4 theory from
the spin-fermion model Hamiltonian, and show that it
contains two new elements absent from the phenomeno-
logical approach. First, the pre-factor of the φ4 term
strongly depends on the ratio between the external mo-
menta and frequencies, and contains a non-analytic term
in addition to the constant one. Second, there also exists
a cubic φ3 term whose pre-factor, although vanishing in
the static limit, also strongly depends on the interplay
between the external momenta and frequencies. We can
recast the non-analytic q3/2 term in the static spin sus-
ceptibility as arising from these cubic and quartic terms
in φ.

We also prove that the non-analyticity appears in
the temperature-dependent uniform static susceptibility
χs(T ). e show below that χ−1

s (T ) ∝ T | logT |, again with
a negative pre-factor.

Finally, we show that the instability of the ferromag-
netic QCP can also be seen from the fermionic self-energy,
which acquires singular terms beginning at the three-loop

!k = vFk! +
k!

2

2mB
. "2.2#

Here k is the momentum deviation from kF, the parallel and
perpendicular components are with respect to the direction
along the Fermi surface at kF, mB is the band mass, the Fermi
velocity vF=kF /m, and for a circular Fermi surface one has
m=mB.

One can then re-cast the original model of fermion-
fermion interaction into an effective low-energy fermion-
boson model. Consider for definiteness that the system is
close to a ferromagnetic QCP. Then the low-energy degrees
of freedom are fermions $with the propagator given by Eq.
"2.1#% and long-wavelength collective spin excitations whose
propagator "the spin susceptibility# is analytic near q=0 and
"=0:

#s,0"q,"# =
#0

$−2 + q2 + A"2 + O"q4,"4#
. "2.3#

Here A is a constant, and $ is the correlation length, which
becomes infinite at the QCP. We prove in the next section
that the "2 term does not play any role in our analysis, and
we therefore neglect it for now and approximate the above
bare propagator by the static one #s,0"q#. The model can then
be described by the phenomenological spin-fermion Hamil-
tonian:

Hsf = &
k,%

!kck,%
† ck,% + &

q
#s,0

−1"q#SqS−q

+ g &
k,q,%,&

ck,%
† !%&ck+q,& · Sq, "2.4#

where != "'x ,'y ,'z# are Pauli matrices. Here Sq with q
() /vF are vector bosonic variables, and g is the effective
fermion-boson interaction. For convenience, we incorporated
the fermionic residue Z0 into g.

To illustrate how this effective Hamiltonian can, in prin-
ciple, be derived from the microscopic model of interacting
conduction electrons, we consider a model in which the elec-
trons interact with a short-range four-fermion interaction
U"q# and assume that only the forward scattering is relevant
$U"0#=U%:

H = &
k,%

!kck,%
† ck,% +

1
2&

q
U &

k,k!,%,&

ck,%
† ck+q,%ck!&

† ck!−q,&.

"2.5#

In this situation, the interaction is renormalized indepen-
dently in the spin and in the charge channels.31 Using the
identity for the Pauli matrices !%& ·!*+=−+%&+*++2+%++&*,
one can demonstrate31 that in each of the channels, the
random-phase approximation "RPA# summation is exact, and
the fully renormalized four-fermion interaction U%&,*,

full "q# is
given by

TABLE I. List of the various parameters used in the text, their expression before the rescaling in N, and
the reference equation where it is defined in the text.

Expression Definition Eq.

vF Fermi velocity "2.2#
m bare quasiparticle mass, m=kF /vF "2.2#
m* effective "renormalized# quasiparticle mass "4.8#
mB band mass, determines the curvature of the Fermi

surface
"2.2#

g spin-fermion coupling constant "2.4#
$ ferromagnetic correlation length "2.3#
#0$2 value of the spin susceptibility at q=0 "2.3#
N number of fermionic flavors
ḡ=g2#0 effective four-fermion interaction "4.6#
*= Nmḡ

-vF
Landau damping coefficient "4.5#

.= 3ḡ$
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3 ( ḡ

NEF
small parameter, measuring the slowness of the
bosonic modes compared to the fermionic ones;

the same small parameter justifies the low-energy
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small parameter related to the curvature of the

fermionic dispersion
"5.13#
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FIG. 1: a) Polarization bubble b) One-loop fermionic self-
energy c) Two-loop fermionic self-energy.

Sq, one recasts (2.8) into Eq. (2.4) with:















g = U a
2

χ0 = 2 k2

F
Ua2

ḡ = g2χ0 = (U/2)k2
F

ξ−2 = k2

F
a2

(

2π
mU − 1

)

(2.9)

The QCP is reached when mU/2π = 1, i.e., ξ−2 = 0.
This coincides with the Stoner criterion for a ferromag-
netic instability [34].

We emphasize that the bosonic propagator in Eq. (2.3)
does not contain the Landau damping term. This is be-
cause we only integrated out the high-energy fermions,
whereas the Landau damping of a collective mode of en-
ergy Ω comes from fermions of energy ω < Ω, and can
only be generated within the low-energy theory. The dy-
namics of both the bosonic fields Sq and the fermionic
c and c† is determined self-consistently by treating both
fluctuations on equal footing.

To put under control the computations carried out
later in the paper, it is necessary to extend the model
by introducing N identical fermion species, while keep-
ing the SU(2) spin symmetry. The Hamiltonian (2.4)
can then be rewritten as:

Hsf = Hf + Hb + Hint where

Hf =
∑

k,j,α

εkc†k,j,αck,j,α

Hb =
∑

q

χ−1
s,0(q)Sq · S−q

Hint = g
∑

k,q,j,α,β

c†k,j,ασαβck+q,j,β · Sq, (2.10)

where the index j = 1 . . .N labels the fermionic species.
We use the spin-fermion Hamiltonian of Eq. (2.10)

as the starting point of our analysis. In the case of a
QCP in the charge channel, or a ferromagnetic instability
with Ising symmetry, the bosonic vector field S becomes
a scalar field designated as φ. The interacting term is also
modified, the Pauli matrices being replaced by δαβ for the
interaction with charge fluctuations, and by σZ

αβ in the
Ising case. The corresponding interaction Hamiltonians
are:

{

HCharge
int = g

∑

k,q,j,α,β c†k,j,αδαβck+q,j,βφq

HIsing
int = g

∑

k,q,j,α,β c†k,j,ασZ
αβck+q,j,βφq

(2.11)

III. DIRECT PERTURBATION THEORY

In this section we compute the fermionic and bosonic
self-energies for the model presented in Eq. (2.4) using a
perturbation expansion around non-interacting fermions.
Our goal here is three-fold: to relate the Landau damping
coefficient to the fermion-boson coupling constant g, to
distinguish between Σ(ω) and Σ(k) and to demonstrate
the importance of the curvature of the Fermi surface.

We evaluate the self-energy in this section up to two-
loop order. We verified that to this order, there is no
qualitative difference between the quantum critical point
in the spin or in the charge channel. We then restrict our
presentation to the spin-fermion model near a ferromag-
netic QCP.

A. Bosonic self-energy: the Landau damping term

The full bosonic propagator depends on the self-energy
Π(q,Ω) according to:

χs(q,Ω) =
χ0

ξ−2 + q2 + Π(q,Ω)
. (3.1)

At the lowest order in the spin-fermion interaction, the
bosonic self-energy is given by the first diagram in Fig.
1, and reads:

Π(q,Ω) = 2Nḡ

∫

d2k dω

(2π)3
G(k, ω) G(k+q, ω+Ω). (3.2)

The curvature of the fermionic dispersion does not af-
fect much the result of this computation as it only leads
to small corrections in q/mBvF . Neglecting the quadratic
term in the fermionic propagators, we introduce the an-
gle θ defined as εk+q = εk + vF q cos θ and perform the
integration over εk, which gives us:

Π(q,Ω) = i
Nḡm

2π2

∫ +∞

−∞
dω (θ(ω + Ω) − θ(ω))

×
∫ 2π

0
dθ

1

iΩ− vF q cos θ

=
Nmḡ

π

|Ω|
√

(vF q)2 + Ω2
. (3.3)

At the QCP, the bosonic mass-shell corresponds to the
region of momentum and frequency space for which the
terms in the inverse propagator are of the same order, i.e.
near a mass shell q and Ω satisfies Π(q,Ω) ∼ q2. It follows
that, at the QCP, near the bosonic mass shell, vF q/Ω ∼
vF (mḡv2

F /Ω2)1/3 $ 1 at small enough frequency, so that
vF q is the largest term in the denominator of Π(q,Ω).
The expression of the bosonic self-energy then reduces
to:

Π(q,Ω) = γ
|Ω|
q

, (3.4)

5

a)
q,Ω

b)
k, ω

c)
k, ω

FIG. 1: a) Polarization bubble b) One-loop fermionic self-
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Sq, one recasts (2.8) into Eq. (2.4) with:















g = U a
2

χ0 = 2 k2

F
Ua2
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The QCP is reached when mU/2π = 1, i.e., ξ−2 = 0.
This coincides with the Stoner criterion for a ferromag-
netic instability [34].

We emphasize that the bosonic propagator in Eq. (2.3)
does not contain the Landau damping term. This is be-
cause we only integrated out the high-energy fermions,
whereas the Landau damping of a collective mode of en-
ergy Ω comes from fermions of energy ω < Ω, and can
only be generated within the low-energy theory. The dy-
namics of both the bosonic fields Sq and the fermionic
c and c† is determined self-consistently by treating both
fluctuations on equal footing.

To put under control the computations carried out
later in the paper, it is necessary to extend the model
by introducing N identical fermion species, while keep-
ing the SU(2) spin symmetry. The Hamiltonian (2.4)
can then be rewritten as:

Hsf = Hf + Hb + Hint where

Hf =
∑

k,j,α

εkc†k,j,αck,j,α

Hb =
∑

q

χ−1
s,0(q)Sq · S−q

Hint = g
∑

k,q,j,α,β

c†k,j,ασαβck+q,j,β · Sq, (2.10)

where the index j = 1 . . .N labels the fermionic species.
We use the spin-fermion Hamiltonian of Eq. (2.10)

as the starting point of our analysis. In the case of a
QCP in the charge channel, or a ferromagnetic instability
with Ising symmetry, the bosonic vector field S becomes
a scalar field designated as φ. The interacting term is also
modified, the Pauli matrices being replaced by δαβ for the
interaction with charge fluctuations, and by σZ

αβ in the
Ising case. The corresponding interaction Hamiltonians
are:

{

HCharge
int = g

∑

k,q,j,α,β c†k,j,αδαβck+q,j,βφq

HIsing
int = g

∑

k,q,j,α,β c†k,j,ασZ
αβck+q,j,βφq

(2.11)

III. DIRECT PERTURBATION THEORY

In this section we compute the fermionic and bosonic
self-energies for the model presented in Eq. (2.4) using a
perturbation expansion around non-interacting fermions.
Our goal here is three-fold: to relate the Landau damping
coefficient to the fermion-boson coupling constant g, to
distinguish between Σ(ω) and Σ(k) and to demonstrate
the importance of the curvature of the Fermi surface.

We evaluate the self-energy in this section up to two-
loop order. We verified that to this order, there is no
qualitative difference between the quantum critical point
in the spin or in the charge channel. We then restrict our
presentation to the spin-fermion model near a ferromag-
netic QCP.

A. Bosonic self-energy: the Landau damping term

The full bosonic propagator depends on the self-energy
Π(q,Ω) according to:

χs(q,Ω) =
χ0

ξ−2 + q2 + Π(q,Ω)
. (3.1)

At the lowest order in the spin-fermion interaction, the
bosonic self-energy is given by the first diagram in Fig.
1, and reads:

Π(q,Ω) = 2Nḡ

∫

d2k dω

(2π)3
G(k, ω) G(k+q, ω+Ω). (3.2)

The curvature of the fermionic dispersion does not af-
fect much the result of this computation as it only leads
to small corrections in q/mBvF . Neglecting the quadratic
term in the fermionic propagators, we introduce the an-
gle θ defined as εk+q = εk + vF q cos θ and perform the
integration over εk, which gives us:

Π(q,Ω) = i
Nḡm

2π2

∫ +∞

−∞
dω (θ(ω + Ω) − θ(ω))

×
∫ 2π

0
dθ

1

iΩ− vF q cos θ

=
Nmḡ

π

|Ω|
√

(vF q)2 + Ω2
. (3.3)

At the QCP, the bosonic mass-shell corresponds to the
region of momentum and frequency space for which the
terms in the inverse propagator are of the same order, i.e.
near a mass shell q and Ω satisfies Π(q,Ω) ∼ q2. It follows
that, at the QCP, near the bosonic mass shell, vF q/Ω ∼
vF (mḡv2

F /Ω2)1/3 $ 1 at small enough frequency, so that
vF q is the largest term in the denominator of Π(q,Ω).
The expression of the bosonic self-energy then reduces
to:

Π(q,Ω) = γ
|Ω|
q

, (3.4)
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C. Summary

We have shown in this section that there are two con-
ditions for the validity of the Eliashberg theory that one
can recast as the smallness of two parameters:

α ∼
ḡ2

γv3
F

∼
ḡ

NEF
" 1 β ∼

mḡ

γvF
∼

mB

Nm
" 1.

(5.34)
The first condition is quite generic for a low-energy

theory since it requires that the fermion-fermion inter-
action mediated by the exchange of a boson should be
smaller than the Fermi energy. Otherwise, the physics
is not restricted to the vicinity of the Fermi surface any-
more. The parameter α plays the same role as the Migdal
parameter for the electron-phonon interaction: it sets the
condition that fermions are fast excitations compared to
bosons. In the scattering processes that are small in α,
fermions are forced by the interaction to vibrate at fre-
quencies near the bosonic mass shell.They are then far
from their own resonance and thus have a small spectral
weight.

However, the condition α " 1 is not sufficient to
construct a fully controllable perturbation expansion
around the non-Fermi liquid state at the QCP. In spa-
tially isotropic systems there exist vertex corrections for
which the external momentum has a component on the
fermionic mass-shell. These corrections don’t contain α.
However, these corrections are sensitive to the curvature
of the Fermi surface, and are small if β is small which can
be achieved either by imposing mB " m or by extending
the theory to a large number N of fermionic flavors.

A word of caution. In evaluating the renormalization
of the static vertex, we silently assumed that

√
α " β,

i.e., ḡ/EF < (mB/m)2/N . At very large N , this is no
longer valid. For this situation, i.e., when β "

√
α, our

estimates show that the static vertex is even smaller than√
α.
Finally, the pairing vertex in the Cooper channel stays

of order O(1), signaling the possibility of a pairing insta-
bility close to the quantum critical point. Nevertheless,
we assume, based on explicit calculations worked out in
[8], that the quantum critical behavior extends in the pa-
rameter space to a region where the superconductivity is
not present.

VI. INSTABILITY OF THE FERROMAGNETIC
QUANTUM CRITICAL POINT

We found that the Eliashberg theory for fermions in-
teracting with gapless long-wavelength bosons is stable
and controlled by two small parameters. We verified this
by calculating the fermionic self-energy in a two-loop ex-
pansion around the Eliashberg solution

One may wonder whether the same conclusions hold
for the bosonic self-energy as well. In particular, what
are the corrections to the static susceptibility χs(q, 0)?

Naively one could assume that they are unimportant and
do not change the bare q2 behavior of the inverse bosonic
propagator at the QCP.

For a ferromagnetic SU(2) QCP, for which the mass-
less bosons are spin fluctuations, we show in this section
that the corrections to the static spin susceptibility are
non-analytic: they scale like q3/2, and do not contain any
pre-factor except for a proper power of kF . Such terms
obviously overshadow the regular q2 of the bare suscep-
tibility at small enough momenta. These terms therefore
belong to Eliashberg theory, which has to be extended to
incorporate them.

The physics behind the q3/2 term in χ(q, 0) at a
ferromagnetic QCP is, by itself, not directly related
to criticality: far away from the QCP, the spin sus-
ceptibility also contains negative, non-analytic |q| term
[24, 25, 26, 27, 28, 29]. This term gradually evolves as
the correlation length ξ increases, and transforms into
the q3/2 term at the QCP. Both these non-analyticities,
at and away from the QCP, emerge because the boson-
mediated interaction between fermions contain a long-
range dynamic component, generated from the Landau
damping.

For charge fluctuations, the q3/2 terms appear in the
individual diagrams for the susceptibility but cancel out
in the full formula for χ(q,Ω). We discuss the physical
origin of the difference between spin and charge suscep-
tibilities in the next section.

One of the reasons why the non-analyticity of the static
spin susceptibility at the QCP has not been analyzed
much earlier is because it was widely believed that an
itinerant fermionic system near a ferromagnetic QCP is
adequately described by a phenomenological 2 + 1D φ4

bosonic theory (in our case, the role of φ is played by
the vector field S) with the dynamic exponent z = 3 and
a constant pre-factor for the φ4 term [1]. In dimensions
d ≥ 4 − z = 1, the model lies above its upper critical
dimension and the φ4 term is simply irrelevant.

In this section, we derive the effective φ4 theory from
the spin-fermion model Hamiltonian, and show that it
contains two new elements absent from the phenomeno-
logical approach. First, the pre-factor of the φ4 term
strongly depends on the ratio between the external mo-
menta and frequencies, and contains a non-analytic term
in addition to the constant one. Second, there also exists
a cubic φ3 term whose pre-factor, although vanishing in
the static limit, also strongly depends on the interplay
between the external momenta and frequencies. We can
recast the non-analytic q3/2 term in the static spin sus-
ceptibility as arising from these cubic and quartic terms
in φ.

We also prove that the non-analyticity appears in
the temperature-dependent uniform static susceptibility
χs(T ). e show below that χ−1

s (T ) ∝ T | logT |, again with
a negative pre-factor.

Finally, we show that the instability of the ferromag-
netic QCP can also be seen from the fermionic self-energy,
which acquires singular terms beginning at the three-loop

!k = vFk! +
k!

2

2mB
. "2.2#

Here k is the momentum deviation from kF, the parallel and
perpendicular components are with respect to the direction
along the Fermi surface at kF, mB is the band mass, the Fermi
velocity vF=kF /m, and for a circular Fermi surface one has
m=mB.

One can then re-cast the original model of fermion-
fermion interaction into an effective low-energy fermion-
boson model. Consider for definiteness that the system is
close to a ferromagnetic QCP. Then the low-energy degrees
of freedom are fermions $with the propagator given by Eq.
"2.1#% and long-wavelength collective spin excitations whose
propagator "the spin susceptibility# is analytic near q=0 and
"=0:

#s,0"q,"# =
#0

$−2 + q2 + A"2 + O"q4,"4#
. "2.3#

Here A is a constant, and $ is the correlation length, which
becomes infinite at the QCP. We prove in the next section
that the "2 term does not play any role in our analysis, and
we therefore neglect it for now and approximate the above
bare propagator by the static one #s,0"q#. The model can then
be described by the phenomenological spin-fermion Hamil-
tonian:

Hsf = &
k,%

!kck,%
† ck,% + &

q
#s,0

−1"q#SqS−q

+ g &
k,q,%,&

ck,%
† !%&ck+q,& · Sq, "2.4#

where != "'x ,'y ,'z# are Pauli matrices. Here Sq with q
() /vF are vector bosonic variables, and g is the effective
fermion-boson interaction. For convenience, we incorporated
the fermionic residue Z0 into g.

To illustrate how this effective Hamiltonian can, in prin-
ciple, be derived from the microscopic model of interacting
conduction electrons, we consider a model in which the elec-
trons interact with a short-range four-fermion interaction
U"q# and assume that only the forward scattering is relevant
$U"0#=U%:

H = &
k,%

!kck,%
† ck,% +

1
2&

q
U &

k,k!,%,&

ck,%
† ck+q,%ck!&

† ck!−q,&.

"2.5#

In this situation, the interaction is renormalized indepen-
dently in the spin and in the charge channels.31 Using the
identity for the Pauli matrices !%& ·!*+=−+%&+*++2+%++&*,
one can demonstrate31 that in each of the channels, the
random-phase approximation "RPA# summation is exact, and
the fully renormalized four-fermion interaction U%&,*,

full "q# is
given by

TABLE I. List of the various parameters used in the text, their expression before the rescaling in N, and
the reference equation where it is defined in the text.

Expression Definition Eq.

vF Fermi velocity "2.2#
m bare quasiparticle mass, m=kF /vF "2.2#
m* effective "renormalized# quasiparticle mass "4.8#
mB band mass, determines the curvature of the Fermi

surface
"2.2#

g spin-fermion coupling constant "2.4#
$ ferromagnetic correlation length "2.3#
#0$2 value of the spin susceptibility at q=0 "2.3#
N number of fermionic flavors
ḡ=g2#0 effective four-fermion interaction "4.6#
*= Nmḡ

-vF
Landau damping coefficient "4.5#

.= 3ḡ$
4-vF

dimensionless coupling constant, it measures the
mass enhancement: .= m*

m −1
"4.6#

/0= 3'3ḡ3

8-3*vF
3 ( ḡ2

NEF
frequency up to which 0"/# dominates over / in

the fermionic propagator
"4.9#

/Max='*vF
3 ('NḡEF frequency up to which the fermionic and the

bosonic mass shells are well separated
"5.3#

%= ḡ2

*vF
3 ( ḡ

NEF
small parameter, measuring the slowness of the
bosonic modes compared to the fermionic ones;

the same small parameter justifies the low-energy
description

"5.1#

&=
mB

mN
small parameter related to the curvature of the

fermionic dispersion
"5.13#
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we therefore neglect it for now and approximate the above
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fermion-boson interaction. For convenience, we incorporated
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random-phase approximation "RPA# summation is exact, and
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given by
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-vF
Landau damping coefficient "4.5#

.= 3ḡ$
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b)
q, 0
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q, 0
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q, 0

FIG. 5: Corrections to the polarization bubble from diagrams
with one and two extra bosonic lines

this, it is useful to expand the products of Green’s func-
tions according to:

G(ω1, k1)G(ω2, k2) =
G(ω1, k1) − G(ω2, k2)

G−1(ω2, k2) − G−1(ω1, k1)
.

(6.13)
Applying this to Π2(q, 0), we find that it splits into

two parts. In one part, the poles in εk are located in
the same half-plane, leading to a vanishing contribution.
The remaining term in Π2(q, 0) is related to Π1(q, 0) in
such a way that:

Π1(q, 0) = −
2Γ1

Γ2
Π2(q, 0). (6.14)

(see Appendix D for details).
Similarly, Π3(q, 0) and Π4(q, 0) are related as

Π3(q, 0) = −
Γ3

Γ4
Π4(q, 0). (6.15)

Collecting all four contributions and using the relations
between pre-factors, we obtain:

Π(q, 0) = ΠA(q, 0) + ΠB(q, 0) , (6.16)

ΠA(q, 0) = Π1(q, 0) + 2Π2(q, 0)

= 16
Nḡ2

(2π)6

∫

d2Kdωd2ldΩ χs(l,Ω)G(ω, k)2

×G(ω + Ω, k + l)G(ω, k + q) ,

ΠB(q, 0) = Π3(q, 0) + Π4(q, 0)

= 16
N2ḡ3

(2π)9χ2
0

∫

d2kdωd2k′dω′dldΩ χs(l,Ω)

×χs(q + l,Ω) G(ω, k) G(ω, k + q)

×G(ω + Ω, k + l + q) G(ω′, k′ + q)

×G(ω′, k′) G(ω′ + Ω, k′ + l + q) (6.17)

1. Fermi-liquid regime

Away from criticality, the correlation length ξ is finite,
and at low frequency, the system is in the Fermi-liquid
regime. The fermionic self-energy is Σ(ω) = λω, Eq.
(4.7).

The spin susceptibility in this regime has been ana-
lyzed in [25, 26, 27, 28, 29, 37]. It was shown there that to
the lowest order in the interaction, ΠB(q, 0) = ΠA(q, 0),
i.e., Π(q, 0) = 2ΠA(q, 0). Beyond leading order, ΠB(q, 0)
and ΠA(q, 0) are not equivalent but are of the same sign
and of comparable magnitude. For simplicity, we assume
that the relation ΠB(q, 0) = ΠA(q, 0) holds in the whole
Fermi liquid regime. We will see below that even at the
QCP, ΠB(q, 0) and ΠA(q, 0) are quite similar (at QCP
ΠB(q, 0) ≈ 1.3ΠA(q, 0)).

Introducing cos θ = k·l
|k||l| and cos θ′ = k·q

|k||q| , and suc-

cessively integrating over |k|, ω and θ′, (6.16) can be
rewritten as:

Π(q, 0) =
8ḡ|q|

π3(1 + λ)vF

∫ ∞

0
dz

∫ π
2

0
dφ

∫ π

0
dθ

1
1

γ̃ξ2 + tanφ

cosφ sin φ

(i sinφ − cos θ cosφ)2

×
z

√

1 + z2(sin φ + i cosφ cos θ)2
,

(6.18)

where we defined γ̃ = γvF

1+λ , and introduced the new vari-

ables z and φ, which satisfy z cosφ = l
q and z sin φ =

(1+λ)Ω
vF q .
The universal part of Π(q, 0) can be isolated by sub-

tracting from it the constant part Π(0, 0). The integral
over z then becomes convergent. Integrating successively
over z, φ and θ, we obtain:

Π(q, 0) = −
4

π2

ḡ

vF (1 + λ)
|q| H

(

1 + λ

γ̃ξ2

)

, (6.19)

where H(0) = 1
3 , and H(x $ 1) ≈ 2/(3x2) We do re-

cover the non-analytic |q| correction to the static spin
susceptibility in D = 2, as obtained in earlier studies
[24, 25, 26, 27].

Note that Eq. (6.20) does not contradict the Fermi
liquid relation χs(q → 0, ω = 0) ∝ (1 + F1,s)/(1 + F0,a),
where F1,s and F0,a are Landau parameters. The Fermi
liquid theory only implies that the static spin suscepti-
bility saturates to a constant value as q → 0, but does
not impose any formal constraint on the q−dependence
of χs(q, ω).

As one gets closer to the QCP, λ = 3ḡ/(4πvSξ−1) di-
verges and the pre-factor of the |q| term vanishes as:

Π(q, 0) = −
16

9π
ξ−1|q|. (6.20)

This is not surprising since the Fermi liquid regime ex-
tends on a region of the phase diagram that shrinks and
ultimately vanishes as one approaches the QCP.

Now, two different scenarios are possible:

• the divergence of ξ at the QCP completely elim-
inates the non-analyticity and the expansion of
Π(q, 0) begins as q2, like in a bare spin suscepti-
bility,

BKV type singularity
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Chubukov, Maslov (07)
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FIG. 1: a) Polarization bubble b) One-loop fermionic self-
energy c) Two-loop fermionic self-energy.

Sq, one recasts (2.8) into Eq. (2.4) with:















g = U a
2

χ0 = 2 k2

F
Ua2

ḡ = g2χ0 = (U/2)k2
F

ξ−2 = k2

F
a2

(

2π
mU − 1

)

(2.9)

The QCP is reached when mU/2π = 1, i.e., ξ−2 = 0.
This coincides with the Stoner criterion for a ferromag-
netic instability [34].

We emphasize that the bosonic propagator in Eq. (2.3)
does not contain the Landau damping term. This is be-
cause we only integrated out the high-energy fermions,
whereas the Landau damping of a collective mode of en-
ergy Ω comes from fermions of energy ω < Ω, and can
only be generated within the low-energy theory. The dy-
namics of both the bosonic fields Sq and the fermionic
c and c† is determined self-consistently by treating both
fluctuations on equal footing.

To put under control the computations carried out
later in the paper, it is necessary to extend the model
by introducing N identical fermion species, while keep-
ing the SU(2) spin symmetry. The Hamiltonian (2.4)
can then be rewritten as:

Hsf = Hf + Hb + Hint where

Hf =
∑

k,j,α

εkc†k,j,αck,j,α

Hb =
∑

q

χ−1
s,0(q)Sq · S−q

Hint = g
∑

k,q,j,α,β

c†k,j,ασαβck+q,j,β · Sq, (2.10)

where the index j = 1 . . .N labels the fermionic species.
We use the spin-fermion Hamiltonian of Eq. (2.10)

as the starting point of our analysis. In the case of a
QCP in the charge channel, or a ferromagnetic instability
with Ising symmetry, the bosonic vector field S becomes
a scalar field designated as φ. The interacting term is also
modified, the Pauli matrices being replaced by δαβ for the
interaction with charge fluctuations, and by σZ

αβ in the
Ising case. The corresponding interaction Hamiltonians
are:

{

HCharge
int = g

∑

k,q,j,α,β c†k,j,αδαβck+q,j,βφq

HIsing
int = g

∑

k,q,j,α,β c†k,j,ασZ
αβck+q,j,βφq

(2.11)

III. DIRECT PERTURBATION THEORY

In this section we compute the fermionic and bosonic
self-energies for the model presented in Eq. (2.4) using a
perturbation expansion around non-interacting fermions.
Our goal here is three-fold: to relate the Landau damping
coefficient to the fermion-boson coupling constant g, to
distinguish between Σ(ω) and Σ(k) and to demonstrate
the importance of the curvature of the Fermi surface.

We evaluate the self-energy in this section up to two-
loop order. We verified that to this order, there is no
qualitative difference between the quantum critical point
in the spin or in the charge channel. We then restrict our
presentation to the spin-fermion model near a ferromag-
netic QCP.

A. Bosonic self-energy: the Landau damping term

The full bosonic propagator depends on the self-energy
Π(q,Ω) according to:

χs(q,Ω) =
χ0

ξ−2 + q2 + Π(q,Ω)
. (3.1)

At the lowest order in the spin-fermion interaction, the
bosonic self-energy is given by the first diagram in Fig.
1, and reads:

Π(q,Ω) = 2Nḡ

∫

d2k dω

(2π)3
G(k, ω) G(k+q, ω+Ω). (3.2)

The curvature of the fermionic dispersion does not af-
fect much the result of this computation as it only leads
to small corrections in q/mBvF . Neglecting the quadratic
term in the fermionic propagators, we introduce the an-
gle θ defined as εk+q = εk + vF q cos θ and perform the
integration over εk, which gives us:

Π(q,Ω) = i
Nḡm

2π2

∫ +∞

−∞
dω (θ(ω + Ω) − θ(ω))

×
∫ 2π

0
dθ

1

iΩ− vF q cos θ

=
Nmḡ

π

|Ω|
√

(vF q)2 + Ω2
. (3.3)

At the QCP, the bosonic mass-shell corresponds to the
region of momentum and frequency space for which the
terms in the inverse propagator are of the same order, i.e.
near a mass shell q and Ω satisfies Π(q,Ω) ∼ q2. It follows
that, at the QCP, near the bosonic mass shell, vF q/Ω ∼
vF (mḡv2

F /Ω2)1/3 $ 1 at small enough frequency, so that
vF q is the largest term in the denominator of Π(q,Ω).
The expression of the bosonic self-energy then reduces
to:

Π(q,Ω) = γ
|Ω|
q

, (3.4)

5

a)
q,Ω

b)
k, ω

c)
k, ω

FIG. 1: a) Polarization bubble b) One-loop fermionic self-
energy c) Two-loop fermionic self-energy.

Sq, one recasts (2.8) into Eq. (2.4) with:
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(2.9)

The QCP is reached when mU/2π = 1, i.e., ξ−2 = 0.
This coincides with the Stoner criterion for a ferromag-
netic instability [34].

We emphasize that the bosonic propagator in Eq. (2.3)
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whereas the Landau damping of a collective mode of en-
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∑
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∑
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where the index j = 1 . . .N labels the fermionic species.
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(2.11)

III. DIRECT PERTURBATION THEORY
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Our goal here is three-fold: to relate the Landau damping
coefficient to the fermion-boson coupling constant g, to
distinguish between Σ(ω) and Σ(k) and to demonstrate
the importance of the curvature of the Fermi surface.

We evaluate the self-energy in this section up to two-
loop order. We verified that to this order, there is no
qualitative difference between the quantum critical point
in the spin or in the charge channel. We then restrict our
presentation to the spin-fermion model near a ferromag-
netic QCP.

A. Bosonic self-energy: the Landau damping term

The full bosonic propagator depends on the self-energy
Π(q,Ω) according to:

χs(q,Ω) =
χ0

ξ−2 + q2 + Π(q,Ω)
. (3.1)

At the lowest order in the spin-fermion interaction, the
bosonic self-energy is given by the first diagram in Fig.
1, and reads:

Π(q,Ω) = 2Nḡ

∫

d2k dω

(2π)3
G(k, ω) G(k+q, ω+Ω). (3.2)

The curvature of the fermionic dispersion does not af-
fect much the result of this computation as it only leads
to small corrections in q/mBvF . Neglecting the quadratic
term in the fermionic propagators, we introduce the an-
gle θ defined as εk+q = εk + vF q cos θ and perform the
integration over εk, which gives us:

Π(q,Ω) = i
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At the QCP, the bosonic mass-shell corresponds to the
region of momentum and frequency space for which the
terms in the inverse propagator are of the same order, i.e.
near a mass shell q and Ω satisfies Π(q,Ω) ∼ q2. It follows
that, at the QCP, near the bosonic mass shell, vF q/Ω ∼
vF (mḡv2

F /Ω2)1/3 $ 1 at small enough frequency, so that
vF q is the largest term in the denominator of Π(q,Ω).
The expression of the bosonic self-energy then reduces
to:

Π(q,Ω) = γ
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, (3.4)

�2/3
0 �1/3

�1/3
0 �2/3

��0

�

⇥1/3

The bare power counting diverges in d  3

d=2

Rech, CP, Chubukov (06)

vendredi 14 octobre 11



And the culprit is ...

vendredi 14 octobre 11



16

2kF - scattering processes

• FS deformed at the hot spots
• anomalous exponents 

  affecting AFM, nematic, and Ferro       

  the back -scattering

vendredi 14 octobre 11



16

2kF - scattering processes

i!k0. Here E! is a crossover energy scale below which phys-
ics is described by the scale-invariant universal theory. To
study the low-energy physics, we will fix our energy scale E
and send a UV cutoff " and the crossover scale E! to
infinity.24 In taking the low-energy limit, it is convenient to
maintain the UV cutoff " to be smaller than the crossover
scale, that is,

E # " # E!. !7"

First, a Feynman diagram with an external energy E is com-
puted with finite !, " and N. To maintain #Eq. !7"$, we take
the !→0 limit first and then "→$ limit later. Finally, we
take the large N limit. This amounts to imposing condition
!7" for all N as N is progressively increased in the large N
limit. In this way, we can keep the bare time derivative term
to be always smaller compared to the singular self-energy at
all energy scales. In this limit, not only the IR physics but
also the UV physics is controlled by the same universal
theory. This is particularly convenient to study universal
low-energy dynamics of the theory at the critical dimension
which is dc=2+1 in this case. This is because any logarith-
mic IR divergence is reflected to a UV divergence and one
can read the renormalization group flow by keeping track of
UV divergences. We will exploit this property to study dy-
namical properties of the theory in Sec. IV.

The action #Eq. !5"$ has four terms which are marginal at
the one-loop level. On the other hand, there are five param-
eters that set the scales of energy momentum and the fields.
Out of the five parameters, only four of them can modify the
coefficients of the marginal terms because the marginal terms
remain invariant under the transformation #Eq. !3"$. Using
the remaining four parameters, one can always rescale the
coefficients of the marginal terms to arbitrary values. There-
fore, there is no dimensionless parameter in this theory ex-
cept for the fermion flavor N. In the following, we will set
vx=vy =e=1. With this choice, c and % in Eq. !2" are auto-
matically on the order of 1. The coefficients of the nonlocal
terms are not independent tunable parameters because those
parameters are completely determined from the local terms.

III. 1 ÕN EXPANSION

A. Failure of a perturbative 1 ÕN expansion

In the naive counting of power in 1 /N, a vertex contrib-
utes N−1/2 and a fermion loop contributes N1. In this count-
ing, only the fermion RPA diagram !Fig. 2" is on the order of
1 and all other diagrams are of higher order in 1 /N. In the
leading order, the propagators become

g0!k" =
1

i!k0 + kx + ky
2 ,

D!k" =
1

%
%k0%
%ky%

+ ky
2

. !8"

One can attempt to compute the full quantum effective
action by including 1 /N corrections perturbatively. However,
we will see that this naive 1 /N expansion breaks down in the
low-energy limit. To see this, let us consider a two-loop ver-
tex correction shown in Fig. 4,

&!p,p + q" = − N−3/2& dkdl g0!k"g0!k + q"

'g0!k + l"g0!p + l"D!l"D!l − q" . !9"

Let us focus on the case with p=0. Without loss of general-
ity, we can assume q0 ,qy (0. Integrating over kx, ky, and lx,
one obtains

&!0,q" = − N−3/2& dl0dlydk0
F!l0,ly,k0,q0,qy"

ly)q + i!lyq0
, !10"

where

F!l0,ly,k0,q0,qy" = 4*3i#+!l0 + k0" − +!l0"$

' #+!k0 + q0" − +!k0"$

'#+!qy − ly" − +!qy"$D!l"D!l − q"
!11"

is a function which is independent of ! and N, with +!x"
being a step function, and )q=qx+qy

2 is the “distance” of q
from the Fermi surface. If the final momentum of the fer-
mion is also on the Fermi surface, that is, )q=0, the vertex
correction becomes

&!0,q" = −
N−3/2

!q0
1/3 f1!qy/q0

1/3" , !12"

where f1!t" is a nonsingular universal function which is in-
dependent of N and !,

FIG. 3. The one-loop fermion self-energy. Here the boson
propagator is a dressed propagator which include the one-loop self-
energy correction in Fig. 2.

k + q

k
l

k + l

l − q

p + lq

p + q

p

FIG. 4. A two-loop vertex correction.
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f1!t" = 4!3#
−1

0

dx#
0

$x$
dy#

1

"

dz

#
t2!z − 1"

%$y + !tz"3&%$!1 − y" + t3!z − 1"3&
. !13"

In the %→0 limit, this two-loop vertex correction which
connects two fermions on the Fermi surface diverges. This
divergence is quite generic: a vertex function which connects
fermions on the Fermi surface diverges as 1 /%n for some
integer n in general. The physical reason for this divergence
is simple. In the %→0 limit, the bare fermion propagator is
independent of frequency and the integration over frequen-
cies is ill defined. This divergence is unphysical in the sense
that it disappears once the frequency-dependent fermion self-
energy correction is included. If one include the one-loop

fermion self-energy !Fig. 3", the dressed fermion propagator
becomes

g!k" =
1

i%k0 + i
c

N
sgn!k0"$k0$2/3 + kx + ky

2
!14"

and the 1 /% divergence disappears. Instead, the resulting fi-
nite term becomes enhanced by a factor of Nn for some in-
teger n&0 because the zero in the denominator !in the %
→0 limit" is replaced by a term which is proportional to
1 /N. As a result, the two-loop vertex correction shown in
Fig. 4 becomes

'!0,q" = − N−1/2f2!qy/q0
1/3" , !15"

where f2!t" is a nonsingular universal function which is in-
dependent of N and %,

f2!t" =
4!3

c
#

−1

0

dx#
0

$x$
dy#

1

"

dz
1

$x + 1$2/3 + y2/3 + $x + y$2/3 + !z − 1"!$x + 1$2/3 + $x$2/3"
t2z!z − 1"

%$y + !tz"3&%$!1 − y" + t3!z − 1"3&
.

!16"

The additional factor of N is from the enhancement factor
that arises due to the 1 /% divergence when the fermions are
on the Fermi surface. With the inclusion of the fermion self-
energy, the IR divergence in Eq. !12" has been traded with an
enhanced power in N in Eq. !15".

Similar enhancement factors arise in other diagrams as
well. For example, a three-loop fermion self-energy correc-
tion shown in Fig. 5 is on the order of N−2 according to the
naive counting. However, the self-energy of fermion on the
Fermi surface !(p=0" diverges as 1 /% in the %→0 limit if
the bare fermion propagator in Eq. !8" is used. If one in-
cludes the one-loop self-energy of fermion, it becomes on the
order of N−1,

)!p" = − i
c3

N
sgn!p0"$p0$2/3, !17"

when the external fermion is on the Fermi surface. Here c3 is
a universal constant on the order of 1.

This discrepancy between the cases with a finite % and an
infinitesimally small % can be understood is the following
way. With a finite %, there is a crossover around the scale
q0'E%. For q0*E%, the i%k0 is dominant in the fermion

propagator and a Feynman diagram obeys the naive counting
in 1 /N. On the other hand, for q0+E% quantum fluctuations
are controlled by the nonlocal term which is suppressed by
1 /N. The enhanced quantum fluctuations at low energies
lead to an enhancement factor by a positive power in N.
Since we are concerned about the low-energy physics, we
should consider the latter limit. This correct low-energy limit
is automatically taken by considering the %→0 limit with a
fixed energy scale q0. This enhancement in the power of N at
IR is a manifestation of the fact that quantum fluctuations
become stronger at low-energies.

B. Genus expansion

In the low-energy limit, what determines the power of a
Feynman diagram in 1 /N? To answer this question, one
should understand the origin of the enhancement factor dis-
cussed in the previous section more systematically. In the
present section, we will develop a simple geometrical way of
determining power of general Feynman graphs.

First, we illustrate the basic idea using the example !Fig.
4" considered in the previous section. As we have seen in the
previous section, the enhancement factor N is a consequence
of the 1 /% singularity in the %→0 limit. To understand the
origin of the 1 /% singularity, it is useful to examine the way
fermions are scattered near the Fermi surface. Suppose both
p and p+q are on the Fermi surface in Fig. 4. In the fermion
loop with running momentum k, the momentum of the fer-
mion consecutively becomes k , !k+q" , !k+ l" as a result of
scatterings. For a given external momentum q of the boson,
one can always choose the spatial momentum k to make bothFIG. 5. A three-loop fermion self-energy correction.
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i!k0. Here E! is a crossover energy scale below which phys-
ics is described by the scale-invariant universal theory. To
study the low-energy physics, we will fix our energy scale E
and send a UV cutoff " and the crossover scale E! to
infinity.24 In taking the low-energy limit, it is convenient to
maintain the UV cutoff " to be smaller than the crossover
scale, that is,

E # " # E!. !7"

First, a Feynman diagram with an external energy E is com-
puted with finite !, " and N. To maintain #Eq. !7"$, we take
the !→0 limit first and then "→$ limit later. Finally, we
take the large N limit. This amounts to imposing condition
!7" for all N as N is progressively increased in the large N
limit. In this way, we can keep the bare time derivative term
to be always smaller compared to the singular self-energy at
all energy scales. In this limit, not only the IR physics but
also the UV physics is controlled by the same universal
theory. This is particularly convenient to study universal
low-energy dynamics of the theory at the critical dimension
which is dc=2+1 in this case. This is because any logarith-
mic IR divergence is reflected to a UV divergence and one
can read the renormalization group flow by keeping track of
UV divergences. We will exploit this property to study dy-
namical properties of the theory in Sec. IV.

The action #Eq. !5"$ has four terms which are marginal at
the one-loop level. On the other hand, there are five param-
eters that set the scales of energy momentum and the fields.
Out of the five parameters, only four of them can modify the
coefficients of the marginal terms because the marginal terms
remain invariant under the transformation #Eq. !3"$. Using
the remaining four parameters, one can always rescale the
coefficients of the marginal terms to arbitrary values. There-
fore, there is no dimensionless parameter in this theory ex-
cept for the fermion flavor N. In the following, we will set
vx=vy =e=1. With this choice, c and % in Eq. !2" are auto-
matically on the order of 1. The coefficients of the nonlocal
terms are not independent tunable parameters because those
parameters are completely determined from the local terms.

III. 1 ÕN EXPANSION

A. Failure of a perturbative 1 ÕN expansion

In the naive counting of power in 1 /N, a vertex contrib-
utes N−1/2 and a fermion loop contributes N1. In this count-
ing, only the fermion RPA diagram !Fig. 2" is on the order of
1 and all other diagrams are of higher order in 1 /N. In the
leading order, the propagators become

g0!k" =
1

i!k0 + kx + ky
2 ,

D!k" =
1

%
%k0%
%ky%

+ ky
2

. !8"

One can attempt to compute the full quantum effective
action by including 1 /N corrections perturbatively. However,
we will see that this naive 1 /N expansion breaks down in the
low-energy limit. To see this, let us consider a two-loop ver-
tex correction shown in Fig. 4,

&!p,p + q" = − N−3/2& dkdl g0!k"g0!k + q"

'g0!k + l"g0!p + l"D!l"D!l − q" . !9"

Let us focus on the case with p=0. Without loss of general-
ity, we can assume q0 ,qy (0. Integrating over kx, ky, and lx,
one obtains

&!0,q" = − N−3/2& dl0dlydk0
F!l0,ly,k0,q0,qy"

ly)q + i!lyq0
, !10"

where

F!l0,ly,k0,q0,qy" = 4*3i#+!l0 + k0" − +!l0"$

' #+!k0 + q0" − +!k0"$

'#+!qy − ly" − +!qy"$D!l"D!l − q"
!11"

is a function which is independent of ! and N, with +!x"
being a step function, and )q=qx+qy

2 is the “distance” of q
from the Fermi surface. If the final momentum of the fer-
mion is also on the Fermi surface, that is, )q=0, the vertex
correction becomes

&!0,q" = −
N−3/2

!q0
1/3 f1!qy/q0

1/3" , !12"

where f1!t" is a nonsingular universal function which is in-
dependent of N and !,

FIG. 3. The one-loop fermion self-energy. Here the boson
propagator is a dressed propagator which include the one-loop self-
energy correction in Fig. 2.
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FIG. 4. A two-loop vertex correction.
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In the %→0 limit, this two-loop vertex correction which
connects two fermions on the Fermi surface diverges. This
divergence is quite generic: a vertex function which connects
fermions on the Fermi surface diverges as 1 /%n for some
integer n in general. The physical reason for this divergence
is simple. In the %→0 limit, the bare fermion propagator is
independent of frequency and the integration over frequen-
cies is ill defined. This divergence is unphysical in the sense
that it disappears once the frequency-dependent fermion self-
energy correction is included. If one include the one-loop

fermion self-energy !Fig. 3", the dressed fermion propagator
becomes

g!k" =
1

i%k0 + i
c

N
sgn!k0"$k0$2/3 + kx + ky

2
!14"

and the 1 /% divergence disappears. Instead, the resulting fi-
nite term becomes enhanced by a factor of Nn for some in-
teger n&0 because the zero in the denominator !in the %
→0 limit" is replaced by a term which is proportional to
1 /N. As a result, the two-loop vertex correction shown in
Fig. 4 becomes

'!0,q" = − N−1/2f2!qy/q0
1/3" , !15"

where f2!t" is a nonsingular universal function which is in-
dependent of N and %,
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The additional factor of N is from the enhancement factor
that arises due to the 1 /% divergence when the fermions are
on the Fermi surface. With the inclusion of the fermion self-
energy, the IR divergence in Eq. !12" has been traded with an
enhanced power in N in Eq. !15".

Similar enhancement factors arise in other diagrams as
well. For example, a three-loop fermion self-energy correc-
tion shown in Fig. 5 is on the order of N−2 according to the
naive counting. However, the self-energy of fermion on the
Fermi surface !(p=0" diverges as 1 /% in the %→0 limit if
the bare fermion propagator in Eq. !8" is used. If one in-
cludes the one-loop self-energy of fermion, it becomes on the
order of N−1,

)!p" = − i
c3

N
sgn!p0"$p0$2/3, !17"

when the external fermion is on the Fermi surface. Here c3 is
a universal constant on the order of 1.

This discrepancy between the cases with a finite % and an
infinitesimally small % can be understood is the following
way. With a finite %, there is a crossover around the scale
q0'E%. For q0*E%, the i%k0 is dominant in the fermion

propagator and a Feynman diagram obeys the naive counting
in 1 /N. On the other hand, for q0+E% quantum fluctuations
are controlled by the nonlocal term which is suppressed by
1 /N. The enhanced quantum fluctuations at low energies
lead to an enhancement factor by a positive power in N.
Since we are concerned about the low-energy physics, we
should consider the latter limit. This correct low-energy limit
is automatically taken by considering the %→0 limit with a
fixed energy scale q0. This enhancement in the power of N at
IR is a manifestation of the fact that quantum fluctuations
become stronger at low-energies.

B. Genus expansion

In the low-energy limit, what determines the power of a
Feynman diagram in 1 /N? To answer this question, one
should understand the origin of the enhancement factor dis-
cussed in the previous section more systematically. In the
present section, we will develop a simple geometrical way of
determining power of general Feynman graphs.

First, we illustrate the basic idea using the example !Fig.
4" considered in the previous section. As we have seen in the
previous section, the enhancement factor N is a consequence
of the 1 /% singularity in the %→0 limit. To understand the
origin of the 1 /% singularity, it is useful to examine the way
fermions are scattered near the Fermi surface. Suppose both
p and p+q are on the Fermi surface in Fig. 4. In the fermion
loop with running momentum k, the momentum of the fer-
mion consecutively becomes k , !k+q" , !k+ l" as a result of
scatterings. For a given external momentum q of the boson,
one can always choose the spatial momentum k to make bothFIG. 5. A three-loop fermion self-energy correction.
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behavior at the hot spot is specified in Eq. !3.23". Moving
away from the hot spot, we have the Fermi liquid form in Eq.
!3.24", with the Fermi velocity and quasiparticle residue
given by Eq. !3.25".

In Sec. IV, we describe the structure of the field theory at
higher loop order. Similar to the effects pointed out recently
by Lee15 for the problem of a Fermi surface coupled to a
gauge field, we find that there are infrared singularities
which lead to a breakdown in the naive counting of powers
of 1 /N. However, unlike in the problem of a gauge field
coupled to a single patch of the Fermi surface,15 we find that
the higher-order diagrams cannot be organized into an ex-
pansion in terms of the genus of a surface associated with the
graph. Rather, diagrams that scale as increasingly higher
powers of N are generated upon increasing the number of
loops.

In Sec. V, we consider the onset of pairing near the SDW
transition, a question examined previously by Abanov et
al.12–14 Like them, we find that the corrections to the d-wave
pairing vertex are enhanced relative to the naive counting of
powers of 1 /N. However, we also find an enhancement fac-
tor which scales as the logarithm squared of the energy scale:
this is the result in Eq. !5.6". We will discuss the interpreta-
tion of this log-squared term in Sec. V.

In Sec. VI we show that a similar log-squared enhance-
ment is present for the vertex of a bond order which is lo-
cally an Ising-nematic order; this order parameter is illus-
trated in Figs. 22 and 23. The unexpected similarity between
this order, and the pairing vertex, is a consequence of emer-
gent SU!2" pseudospin symmetries of the continuum theory
of the SDW transition, with independent pseudospin rota-
tions on different pairs of hot spots. One of the pseudospin
rotations is the particle-hole transformation, and the other
pseudospin symmetries will be described more completely in
Sec. II.

II. LOW-ENERGY FIELD THEORY

We will study the generic phase transition between a
Fermi liquid and a SDW state in two spatial dimensions, and
our discussion also easily generalizes to charge density wave
order. The wave vector of the density wave order is Q! , and
we assume that there exist points on the Fermi surface con-
nected by Q! ; these points are known as hot spots. We assume
further that the Fermi velocities at a pair of hot spots con-
nected by Q! are not parallel to each other; this avoids the
case of “nested Fermi surfaces,” which we will not treat here.

A particular realization of the above situation is provided
by the case of SDW ordering on the square lattice at wave
vector Q! = !! ,!". We also take a Fermi surface appropriate
for the cuprates, generated by a tight-binding model with
first and second neighbor hopping. We will restrict all our
subsequent discussion to this case for simplicity.

At wave vector Q! = !! ,!" the SDW ordering is collinear,
and so is described by a three component real field "a, a
=x ,y ,z. There are n=4 pairs of hot spots, as shown in Fig. 1.

We introduce fermion fields !#1$
! ,#2$

! ", !=1, . . . ,n, $
= ↑↓ for each pair of hot spots. Lattice rotations map the

pairs of hot spots into each other, acting cyclically on the
index !. Moreover, the two hot spots within each pair are
related by a reflection across a lattice diagonal. It will be
useful to promote each field # to have N flavors with an eye
to performing a 1 /N expansion. !Note that in Ref. 14, the
total number of hot spots 2nN is denoted as N." The flavor
index is suppressed in all the expressions. The low-energy
effective theory is given by the Lagrangian

L =
N

2c2 !!%"! "2 +
N

2
!""! "2 +

Nr

2
"! 2 +

Nu

4
!"! 2"2

+ #1
†!!!% − iv!1

! · ""#1
! + #2

†!!!% − iv!2
! · ""#2

!

+ &"a!#1$
†!%$$!

a #2$!
! + #2$

†!%$$!
a #1$!

! " !2.1"

The first line in Eq. !2.1" is the usual O!3" model for the
SDW order parameter, the second line is the fermion kinetic
energy, and the third line is the interaction between the SDW
order parameter and the fermions at the hot spots. Here, we
have linearized the fermion dispersion near the hot spots and
v!! are the corresponding Fermi velocities. It is convenient to
choose coordinate axes along directions x̂= 1

#2 !1,1" and ŷ
= 1

#2 !−1,1" so that

v!1
!=1 = !vx,vy", v!2

!=1 = !− vx,vy" . !2.2"

These Fermi velocities are indicated in Fig. 2. The other
Fermi velocities are related by rotations, v!!= !R!/2"!−1v!!=1.
The modifications of the Fermi surfaces in the phase with
SDW order are shown in Fig. 3.

We choose the coefficient & of the fermion-SDW interac-
tion to be of O!1" in N. As a result, the coefficients in the
first line of Eq. !2.1" are all scaled by N as this factor will
automatically appear upon integrating out the high-
momentum/frequency modes of the fermion fields.

Before proceeding with the analysis of the theory !2.1",
let us note its symmetries. Besides the microscopic transla-
tion, point-group, spin-rotation, and time-reversal symme-
tries, the low-energy theory possesses a set of four emergent

FIG. 1. Square lattice Brillouin zone showing the Fermi surface
appropriate to the cuprates. The filled circles are the hot spots con-
nected by the SDW wave vector Q! = !! ,!". The locations of the
continuum fermion fields #1

! and #2
! are indicated.
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!r!s" =
!r

1 +
12!r

"nN
log!1/s"

. !3.40"

Here we have assumed that the starting point of the flow
!r#1. Note that the logarithmic flow to !→0 in the infra-
red, with vanishing velocity ratio, is similar to that found
recently in Ref. 19 in a different physical context.

Let us now discuss the physics of the !=0 fixed point.
The renormalization constants in Eqs. !3.36"–!3.38" also de-
termine the renormalization of the velocities, the anomalous
dimensions of the bosons, fermions, and of the $2 operator.
For the velocities, the ratio is already specified by !, and it is
convenient to take % as the other independent combination of
the velocities. We have therefore

&% =
2

"nN
# 1

!r
− !r$%1 + # 1

!r
− !r$tan−1 1

!r
& ,

&$ =
2

"nN
% 1

!r
− !r + # 1

!r
2 + !r

2$tan−1 1
!r
& ,

&' = −
1

"nN
# 1

!r
− !r$%1 + # 1

!r
− !r$tan−1 1

!r
& ,

&2 = −
2

"nN
# 1

!r
− !r$%1 + # 1

!r
− !r$tan−1 1

!r
& −

5
2"2N

ũr.

!3.41"

Note that as can be seen from Eqs. !3.16" and !3.19" the flow
of the dimensionful constant %r described by the exponent &%
is equivalent to an anomalous dynamical critical exponent z.
Since &% is nonzero, the dynamical behavior of the theory
deviates from the simple Hertz-Millis scaling with z=2.

As ! flows slowly to 0, the critical exponents in Eq.
!3.41" slowly vary,

&$ →
1

nN

1

!r
2 , &' → −

1
2nN

1

!r
2 , &% →

1
nN

1

!r
2 ,

&2 → −
1

nN

1

!r
2 ,!r → 0. !3.42"

Observe that the corrections to the critical exponents diverge
as !r→0. Thus, for sufficiently small momenta the 1 /N ex-
pansion breaks down. From Eq. !3.42" we see that this will
happen when !'1 /(N; from Eq. !3.40", we can estimate
that this occurs at a momentum scale k'exp!−N3/2". This is
parametrically smaller than the scale k'exp!−N" at which
the direct expansion in 1 /N !without RG improvement" be-
comes invalid.

Despite the breakdown of the RG at the longest scales,
there is an intermediate asymptotic regime, 1 /(N#!r#1,
where Eq. !3.42" remains valid, and we can integrate the RG
equations and find interesting consequences for both the fer-
mionic and bosonic spectra.

For the fermions, the location of the '1 Fermi surface is
given at three level by v̂1 · p! =0, or py =−vxpx /vy =−px /!.

Evaluating ! at s=( / px, we find the Fermi surface at

py = −
12

"nN
px log!(/)px)" . !3.43"

The resulting Fermi surface distorts from the shape shown in
Fig. 1 to that in Fig. 8. We may also use RG to improve the
one-loop result for the fermion self-energy !3.26". From Eq.
!3.16", the fermion self-energy at the hot spot is

)!*,p! = 0" ' − i exp#−
3

"2n3N3 log3 (2

%r)*)$)*)1/2 sgn!*" ,

!3.44"

Along the Fermi surface away from the hot spot, the quasi-
particle residue and Fermi velocity behave as

vF ' exp# 48
"2n3N3 log3 (

p*
$p*, Z ' #log

(

p*
$−1/2

p* .

!3.45"

The characteristic frequency of the bosonic spectrum is
*'q!2 /%r; evaluating %r at s=( / )q! ), we find that it scales
with a “super-power-law” of the momentum

* ' q!2 exp# 48
"2n3N3 log3 (

)q! )$ . !3.46"

From Eq. !3.16" we also obtain the static and dynamic scal-
ing of the bosonic propagator,

D−1!*,q! = 0" ' )*)1−!1/nN" exp# 6
"2n4N4 log3 (2

%r)*)$
+#log

(2

%r)*)$−1/3
,

D−1!* = 0,q!" ' )q! )2 exp# 48
"2n3N3 log3 (

)q! )$ . !3.47"

FIG. 8. Modification of the Fermi surfaces in Fig. 2 at the SDW
quantum critical point. As in Figs. 2 and 3, the full lines are the
Fermi surfaces, and the white, light shaded, and dark shaded re-
gions denote momenta where 0, 1, and 2 of the bands are occupied.
The equation of one of the Fermi surfaces is given in Eq. !3.43".
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FIG. 2: Diagrammatic building blocks of our low energy field
theory: (a) the propagator gn(K), Eq. (2.53), and (b) the
interaction vertices S4, S3, and S2 from Eqs. (2.54), (2.56),
and (2.57).

mensions. It is a field theory for the anticommuting su-
perfield Ψ which describes the bosonic excitations. The
interaction between these excitations appears as sum of
the quadratic term S2, the cubic term S3 and the quar-
tic term S4. The bare coupling constants are written
in Eq. (2.55). In principle, one can immediately start
perturbative studies of the model using the contraction
rule, Eq. (2.52), and Wick’s theorem. A possible dia-
grammatic representation is shown in Fig. 2. Although
the effective field theory may look somewhat complex, it
allows to conveniently treat the low energy limit, identi-
fying the interesting logarithms and summing them. This
is what the next sections are devoted to.

III. PERTURBATION THEORY

The bosonized model, Eqs. (2.49)-(2.57), is not trivial
and the perturbation theory in the coupling constants
γs
n̂ñ

, γc
n̂ñ

, Eq. (2.55), yields logarithmic contributions di-
verging in the limit T → 0. In this section, we iden-
tify the relevant classes of logarithmic one-loop diagrams.
Later in Sec. IV, these logarithmic contributions will be
summed up to infinite order by means of a one-loop renor-
malization group scheme.
In one dimension, such a procedure would essentially

repeat the steps from Ref. 15. The peculiarity of higher
dimensions, d > 1, appears in form of the “rotations”
n + q⊥/2pF of the angular arguments in the interact-
ing superfields, cf. Eqs. (2.54)-(2.57). Consequently, the
running momentum Q in a one-loop diagram affects at
the same time the (actual) momentum K and the di-
rection n of the propagators. As a result, we will find
that logarithms which certain classes of diagrams feature
in d = 1 dimension are suppressed in dimensions d > 1
because of transverse fluctuations q⊥ along the Fermi
surface. Eventually, the effects of the finite Fermi sur-
face curvature lead to renormalization group equations

FIG. 3: Backscattering diagrams for the thermodynamic po-
tential Ω: Diagram (a) is the second order diagram containing
the leading backscattering contribution for n ∼ −ñ while di-
agram (b) represents an exemplary logarithmic renormaliza-
tion to diagram (a), cf. Sec. IIIC. Finally, diagram (c) gives
for n1 ∼ −n2 ∼ −n3 ∼ n4 a backscattering contribution
of higher order in the interaction and also includes a renor-
malizing building block S4. For weakly interacting fermions,
diagram (c) can be neglected.

different from the ones obtained15 in one dimension.
Before studying the one-loop vertex corrections, we be-

gin the perturbative analysis of this section as we dis-
cuss the relevant diagrams for the thermodynamic po-
tential. These diagrams describe physical backscattering
processes.
While the boson model, Eqs. (2.49)-(2.57), has been

derived for an arbitrary dimension d, we consider from
now on the most interesting case of a two-dimensional
Fermi liquid, d = 2.

A. Backscattering diagrams

In the second order in the interaction, only diagram
Fig. 3(a) describes a contribution to the thermodynamic
potential Ω relevant for studying the backscattering ef-
fects. All other second order diagrams cannot contain
two boson propagators gn(K) and gñ(K ′) with n ∼ −ñ.
Figure 3(b) shows an exemplary diagram that renormal-
izes the bare diagram Fig. 3(a) while Fig. 3(c) represents
a backscattering contribution of higher order in the in-
teraction. Considering the limit of weak interaction, we
are safe to neglect such higher order diagrams because
they do only describe high energy renormalizations of
the coupling constants.
Working with the effective low energy theory, we have

to be sure that the main contribution to the physical
quantities of interest indeed comes from the low energies
not exceeding T . Whether this is the case or not should
be checked for each quantity under investigation. In fact,
the low energy contributions are not most important for
a perturbative correction ∆Ω (T ) to the thermodynamic
potential and, thus, we cannot compute∆Ω (T ) using the
low energy limit only. However, the main contribution to

* K.B. Efetov, C. Pepin, H. Meier,
Exact bosonization for an interacting Fermi gas in arbitrary dimensions
Phys. Rev. Lett. 103,186403 (2009); PRB 82,235120 (2010), preprint 2011
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form

δc(3) =
3ζ(3)

2πv2F

{
(u0+uπ)〈(uϑ+uπ−ϑ)

2〉

+ 3(u0−uπ)〈(uϑ−uπ−ϑ)
2〉
}
T 2 ln(Λ/T ) (5.6)

Here, ϑ is the scattering angle, uϑ = νṼ (2pF sin(ϑ/2)),
and 〈gϑ〉 is the angular average for an arbitrary function
gϑ. Following the decoupling into soft modes, Eq. (2.7),
angular averages 〈gϑ〉 are to be replaced by (g0 + gπ)/2
in our model. Applying this correspondence to Eq. (5.6),
we recover immediately the same logarithmic dependence
of the specific heat δc(3) at third order as in Eq. (5.5).
Thus, on one hand Eq. (5.5) serves as a good check of

our low energy model, on the other hand we confirm the
estimate ν∗ ∼ ν/2 discussed after Eq. (3.16).
In the remaining of this analysis, we extend the per-

turbative result Eq. (5.5) by including the leading in γI/IIπ

terms of all orders in the logarithm ln(Λ/T ). This cal-
culation shall complete the picture of the non-analytic
corrections to the specific heat at low temperatures T .

B. Full low temperature result

In this section, we will extract from Eq. (5.1) the
anomalous contribution to the specific heat in all orders
in ln(Λ/T ). As a result, we obtain the full picture of the
non-analyticities in the Fermi liquid thermodynamics at
low temperatures T .
In order to accomplish this task, we should choose a

model for the cutoff function f(q̄⊥), which controls the
two soft modes represented by Fig. 1(a) and (b). Follow-
ing Ref. 15, a suitable candidate is a Lorentzian of the
form

f(q̄⊥) =
1

1 + |q̄⊥|2/q20
. (5.7)

This choice implies f(0) = 1 so that the result from sec-
ond order perturbation theory, Eq. (3.6), remains the
same. We recall that within the low energy theory, it is
implied that q0 % pF . Fourier transforming Eq. (5.7)
yields

f(r⊥) =
π

2
e−|r⊥| (5.8)

according to the definition of the Fourier transform in
Eq. (3.18).
Inserting the model function f(r⊥), Eq. (5.8), into

the renormalized quadratic vertices, Eqs. (4.21)-(4.23),
we are in a position to Fourier transform them to the
momentum representation, which is needed for formula
Eq. (5.1). Since only the leading quadratic in q̄⊥ term

of the expression [∆I/II
⊥ ]2−∆I/II

0 ∆I/II
⊥⊥ is relevant, we may

neglect higher orders in q̄⊥ from the beginning. Thus,

the evaluation of the Fourier integrals yields

∆I/II
0 (q̄⊥) =

γI/II
n̂ñ(

1 + π
4 γ

I/II

n̂ñ
ξ
)2 , (5.9)

∆I/II
⊥ (q̄⊥) = −q̄⊥

γI/II
n̂ñ

1 + π
4 γ

I/II

n̂ñ
ξ
, (5.10)

∆I/II
⊥⊥(q̄⊥) = −q̄2

⊥
4

πξ
ln
(
1 +

π

4
γI/II
n̂ñ

ξ
)
. (5.11)

Applying ξ = 4uũ(ν∗/ν) ln(Λ/T ) to the renormalized
couplings, Eqs. (5.9)-(5.11), inserting them into Eq. (5.1),
using the integral
∫ 1

0

∫ 1

0
dudũ

uũ+ x−1 ln(1 + xuũ)

(1 + xuũ)2
=

ln2(1 + x)

2x2
,

and adopting the result of Appendix A for the remain-
ing integrations, we obtain for the low temperature non-
analytic part of the thermodynamic potential δΩ the for-
mula

δΩ =
ζ(3)T 3

πv2F

{
ln2(1 + γIπL)

L2
+ 3

ln2(1 + γIIπ L)

L2

}
.

(5.12)

Herein, the quantity L is defined as

L =
πν∗

ν
ln
(Λ
T

)
(5.13)

with ν∗ given by Eq. (3.16). The bare coupling con-

stants γI/IIπ are expressed in terms of the original fermion
interaction potential Ṽ as

γI/IIπ =
ν

2

{
Ṽ (0)± Ṽ (2pF )

}
, (5.14)

cf. Eq. (4.12).
Equation (5.12) constitutes our final result for the non-

analyticities of a two-dimensional Fermi gas with repul-
sive interaction. In the following, we discuss the correc-
tions to the specific heat of the Fermi liquid and possible
instabilities.

C. Corrections to the Fermi liquid

For the Fermi liquid model, the thermodynamic poten-
tial correction δΩ, Eq. (5.12), is a regular function for all

relevant γI/IIπ . By means of the formula

δc = −T
∂2δΩ

∂T 2
(5.15)

we find the anomalous contribution to the specific heat
at low temperatures T in the form

δc = −
6ζ(3)T 2

πv2F

{
ln2(1 + γIπL)

L2
+ 3

ln2(1 + γIIπ L)

L2

}
.

(5.16)

• Re-summation of the BS processes

• Curvature effects : charge and spin channels are coupled

• Re-summation of all non analyticities for the FL theory

Hendrik Meier,CP, Efetov
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FIG. 3: Fermi surface evolution from FL to FL∗: close to the
transition, the FL phase features two Fermi surface sheets
(the cold c and the hot f sheet, see text). Upon approach-
ing the transition, the quasiparticle residue Z on the hot f
sheet vanishes. On the FL∗ side, the f sheet becomes the
spinon Fermi surface, whereas the c sheet is simply the small
conduction electron Fermi surface.

includes both local moments and conduction electrons.
Upon moving toward the transition to FL∗ (b0 decreas-
ing to zero), the c-Fermi surface expands in size to match
onto the small Fermi surface of FL∗. On the other hand,
the f -Fermi surface shrinks to match onto the spinon
Fermi surface of FL∗.

Upon increasing b0 in the FL state and depending on
the band structure, another transition is possible, where
the c band becomes completely empty. Then, the Fermi
surface topology changes from two sheets to a single sheet
– such a transition between two conventional Fermi liq-
uids is known as Lifshitz transition and will not be further
considered here.

The quasiparticle weight Z close to the FL–FL∗ transi-
tion is readily calculated in the present mean-field theory.
For the electron Green’s function we find

G(k, iων) =
u2

k

iων − Ek+
+

v2
k

iων − Ek−
. (11)

Therefore at the Fermi surface of the c-band (which has
dispersion Ek+, the quasiparticle residue Z = u2

k. At this
Fermi surface, Ek+ ≈ εk ≈ 0 so that

Ek+ ≈ εk +
b2
0

εk − εkf
⇒ uk ≈ −

JH

b0
vk. (12)

Using Eqs. (10), we then find Z ≈ 1 on the c-Fermi
surface.

At the Fermi surface of the f -band on the other hand,
Z = v2

k. Also near this Fermi surface, |εk − εkf | ≈ t
where t is the conduction electron bandwidth. We have
assumed as is reasonable that t $ JH . Thus for the
f -Fermi surface,

Ek+ ≈ εk +
b2
0

εk − εkf
⇒ uk ≈ −

t

b0
vk. (13)

This then gives

Z = v2
k ≈

(

b0

t

)2

. (14)

Thus the quasiparticle residue stays non-zero on the c-
Fermi surface while it decreases continuously to zero on
the f -Fermi surface on moving from FL to FL∗. (The
f -Fermi surface is “hot” while the c-Fermi surface is
“cold”.)

Clearly the critical point is not a Fermi liquid. Z van-
ishes throughout the hot Fermi surface at the transition,
and non-Fermi liquid behavior results. It is interesting
to contrast this result with the spin-fluctuation model
(Hertz-Moriya-Millis criticality) where the non-Fermi liq-
uid behavior is only associated with some “hot” lines in
the Fermi surface, and consequently plays a subdominant
role.

Despite the vanishing quasiparticle weight Z, the effec-
tive mass m∗ of the large Fermi surface state does not di-
verge at the transition in this mean-field calculation, be-
cause the electron self-energy is momentum-dependent.
Physically, the quasiparticle at the hot Fermi surface is
essentially made up of the f -particle for small b; even
when b goes to zero the f -particle (the spinon) continues
to disperse due to the non-vanishing χ0 term. Indeed the
low-temperature specific heat C ∼ γT with γ non-zero
in both phases. As we argue below, this is an artifact
of the mean-field approximation and will be modified by
fluctuations.

The detailed shape of the spinon Fermi surface in the
FL∗ phase (or the hot Fermi surface which derives from
it in the FL phase) depends on the details of the lat-
tice and the form of the local moment interactions. For
the particular model discussed above, the spinon Fermi
surface is perfectly nested. In more general situations, a
non-nested spinon Fermi surface will obtain. In all cases,
however, the volume of the spinon Fermi surface will cor-
respond to one spinon per site.

IV. FLUCTUATIONS: MAGNETISM AND
SINGULAR SPECIFIC HEAT

Fluctuation effects modify the picture obtained in the
mean-field theory in several important ways. We first
discuss fluctuation effects in the two phases. The heavy
Fermi liquid phase is of course stable to fluctuations
- their main effect being to endow the f -particle with
a physical electric charge thereby making it an elec-
tron [36, 37]. Fluctuation effects are more interesting in
the FL∗ state, and are described by a U(1) gauge theory
minimally coupled to the spinon Fermi surface (which
continues to be essentially decoupled from the conduc-
tion electron small Fermi surface). This may be made
explicit by parameterizing the fluctuations in the action
in the FL∗ phase as follows:

χrr′(τ) = eia
rr

′ (τ)χ0rr′ . (15)
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uid behavior is only associated with some “hot” lines in
the Fermi surface, and consequently plays a subdominant
role.

Despite the vanishing quasiparticle weight Z, the effec-
tive mass m∗ of the large Fermi surface state does not di-
verge at the transition in this mean-field calculation, be-
cause the electron self-energy is momentum-dependent.
Physically, the quasiparticle at the hot Fermi surface is
essentially made up of the f -particle for small b; even
when b goes to zero the f -particle (the spinon) continues
to disperse due to the non-vanishing χ0 term. Indeed the
low-temperature specific heat C ∼ γT with γ non-zero
in both phases. As we argue below, this is an artifact
of the mean-field approximation and will be modified by
fluctuations.

The detailed shape of the spinon Fermi surface in the
FL∗ phase (or the hot Fermi surface which derives from
it in the FL phase) depends on the details of the lat-
tice and the form of the local moment interactions. For
the particular model discussed above, the spinon Fermi
surface is perfectly nested. In more general situations, a
non-nested spinon Fermi surface will obtain. In all cases,
however, the volume of the spinon Fermi surface will cor-
respond to one spinon per site.

IV. FLUCTUATIONS: MAGNETISM AND
SINGULAR SPECIFIC HEAT

Fluctuation effects modify the picture obtained in the
mean-field theory in several important ways. We first
discuss fluctuation effects in the two phases. The heavy
Fermi liquid phase is of course stable to fluctuations
- their main effect being to endow the f -particle with
a physical electric charge thereby making it an elec-
tron [36, 37]. Fluctuation effects are more interesting in
the FL∗ state, and are described by a U(1) gauge theory
minimally coupled to the spinon Fermi surface (which
continues to be essentially decoupled from the conduc-
tion electron small Fermi surface). This may be made
explicit by parameterizing the fluctuations in the action
in the FL∗ phase as follows:

χrr′(τ) = eia
rr

′ (τ)χ0rr′ . (15)

Spin liquid
Heavy fermi liquid
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Entropic considerations
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CeCoIn5

x

heavy Fermi liquid
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SPIN LIQUID

AF  LRO

QCP

QCP!line

Localised Itinerant

T0

CeRhIn5

CeCu5.9Au0.1

YRh2Si2

URu2Si2

Fig. 2: Tentative phase diagram of the Kondo Breakdown QCP in the presence of magnetism. The third axis
represented on this diagram is the axis of “frustration”. It can be any external parameter which competes with the

AF long range order. When the frustration parameter is strong enough, AF disappears, revealing the Kondo
Breakdown QCP. Within this 3D phase diagram, one observed a line of Kondo Breakdown QCPs, which are

uncorrelated with the magnetic order. The crossing of the two critical lines of AF LRO and Kondo Breakdown is
accidental. In the Kondo Breakdown theory, the compound YbRh2Si2 is situated at the crossings ; CeRhIn5 would

be situated somewhere on the frustration axis, URu2Si2 would be deep in the heavy Fermi liquid phase (with a
super-conducting instability at low temperatures) and CeCu6−xAux is located at the AF QCP of itinerant

character. This phase diagram suggests that the Kondo Breakdown QCP is a generic feature of any heavy fermion
phase diagram ; it is a universal fixed point, of non magnetic character, whose influence on transport properties

dominates other scattering mechanisms in the quantum critical regime. Note that another phase diagram has been
proposed [48] where the crossing of the Kondo breakdown line and the AF line has a finite width.

and τp(ω) is the transport scattering time, which in-
cludes both the effects of the impurities and the scatte-
ring through the fluctuations of the bosonic mode. Ano-
ther difference with Ref. [29] is that τp depends on the
position of p on the Fermi surface. We use the Mathies-
sen’s rule for adding the resistivities to get

τ−1
p

(ω) = τ−1
imp(p, ω) + τ−1

dyn(p, ω) . (9)

To simplify the discussion, we take τ−1
imp(p, ω) = τ−1

0 as
a constant of p and ω. The elastic scattering time τ0

encompasses for example the scattering through impurity
centers. The effect of the fluctuations are described by
τ−1
dyn(p, ω) = τ−1

h in the hot regions and τ−1
fluct(p, ω) =

τ−1
c in the cold regions. Typically in the SDW theory

the inelastic part of the scattering time has the following

form

τ−1
h ! Ah T (d−2)/2

τ−1
c ! Ac T 2 ,

(10)

where Ah and Ac are non universal constants. τ−1
c has

the typical Fermi liquid exponent while τ−1
h has an ano-

malous exponent due to the scattering through the soft
quantum modes present at the QCP. Details of the eva-
luation of L11 and L12 can be found in the Appendix.
The result is :

L11 =
πv2

F ρ∗0
2

[

Vh

τ−1
0 + τ−1

h

+
Vc

τ−1
0 + τ−1

c

]

, (11)

where ρ∗dε =
∫ +∞

0 p2dp/(2π)2 and Vh (resp. Vc ) is the
volume of the hot (resp. cold ) regions of the Fermi sur-
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Antiferromagnetism and superconductivity in a hole-doped Kondo lattice

R. R. Urbano,1 B.-L. Young,2 N. J. Curro,1 J. D. Thompson,1 L. D. Pham,3 and Z. Fisk4

1Condensed Matter and Thermal Physics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan

3University of California, Davis, CA 95616
4University of California, Irvine, CA 92697-4573

(Dated: April 5, 2007)

The heavy fermion superconductor CeCoIn5 can be tuned between superconducting and antiferro-
magnetic ground states by hole doping with Cd. Nuclear magnetic resonance (NMR) data indicate
that these two orders coexist microscopically with an ordered moment ∼0.7 µB. As the ground
state evolves, there is no change in the low frequency spin dynamics in the disordered state. These
results suggest that the magnetism emerges locally in the vicinity of the Cd dopants.

PACS numbers: 71.27.+a, 76.60.-k, 74.70.Tx, 75.20.Hr

The discovery of superconductivity in the layered
CeMIn5 system has reignited interest in the low tempera-
ture physics of the Kondo lattice. The CeMIn5 materials,
with M = Rh, Co, or Ir, exhibit antiferromagnetism, su-
perconductivity or the coexistence of these two orders
depending on the external hydrostatic pressure and the
particular alloy content of the M element [1]. CeCoIn5

is particularly interesting as it has the highest Tc for a
Ce-based heavy fermion superconductor, and the normal
state exhibits non-Fermi liquid behavior that may be as-
sociated with a quantum critical point (QCP) [2]. Re-
cently Pham and coworkers discovered that the ground
state of CeCoIn5 can be tuned reversibly between super-
conducting and antiferromagnetic by substituting Cd for
In, with a range of coexistence for intermediate dopings
[3]. Although other materials exhibit coexisting antifer-
romagnetism and superconductivity, the CeMIn5 system
is unique in that it can be continuously tuned by hole
doping.

In the Doniach model of a Kondo lattice, localized
spins interact with conduction electron spins via an ex-
change interaction, J , and the ground state depends sen-
sitively on the product JN(0), where N(0) is the den-
sity of conduction electron states at the Fermi level [6].
For JN(0) ! 1, Kondo screening of the local moments
by the conduction electron spins dominates, resulting
in a spin liquid ground state. At the other extreme
where JN(0) " 1, the indirect exchange (RKKY) be-
tween local spins mediated by the conduction electrons
dominates, and the ground state is antiferromagnetic.
When JN(0) ∼ 1 there is a quantum critical point where
TN → 0. Superconductivity typically emerges in this
regime where competing interactions lead to complex be-
havior and small perturbations can drastically alter the
ground state. In CeCoIn5 Cd doping introduces holes
that may modify the Fermi surface(s) of the conduction
electrons, changing N(0) and hence the ground state. As
the Fermi surface evolves with hole doping, either su-
perconductivity or antiferromagnetism may emerge de-
pending on the quantity JN(0) in much the same way

FIG. 1: (a) Tc (blue) and TN (red) versus effective doping,
yeff , in CeCo(In1−xCdx)5 and CeCo(In1−xSnx)5, where yeff =
0.1x for Cd and yeff = 0.6x for Sn, and x is the nominal
doping [3, 4]. Arrows show the concentrations reported in
this study. (b) T−1

1 versus temperature in CeCo(In1−xCdx)5
with x = 0.15 (blue, !), x = 0.10 (green, •), x = 0 (grey ",
from [5]) and CeRhIn5 (♦). TN (x) is indicated by red arrows
and Tc(x) by black arrows. (c) (T1T )−1 versus temperature.

that pressure changes the ground state by modifying J
[1]. An alternative to this global interpretation is that
the Cd acts as a local defect that nucleates magnetism
in a quantum critical system [7]. In a system close to
an antiferromagnetic quantum critical point (QCP), a
local perturbation can induce local order. As the corre-
lation length grows and reaches the scale of the distance
between impurities, the system can undergo long-range
order.

In this Letter we report NMR data in
CeCo(In1−xCdx)5 that supports the latter scenario.
We report data for x = 0.10 and x = 0.15, where x is the
nominal concentration as reported in Ref. [3] (Fig. 1a).
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FIG. 1: In-plane resistivity of CeCoIn5 plotted (a) vs. T at
0 T, and (b) vs. T 2/3 at 12 T. Data for CeRhIn5 at 0 T and
21 kbar applied pressure is also shown (from Ref. 20). (c)
H-T phase diagram of CeCoIn5, with evolution of the expo-
nent n (in ∆ρ ∝ T n) observed in the non-Fermi liquid (NFL)
regime above the superconducting (SC) and Fermi liquid (FL)
states. The dotted line indicates the FL-NFL crossover at T !

(squares are data points marking the end of the T 2 regime).
The dashed line indicates the crossover from positive (at low
H) to negative (at high H) magnetoresistance (circles are data
points marking the peak in ρ vs. H). The shaded area is a
crossover region where neither of the well-defined power laws
(n = 1 at low H and n = 2/3 at high H) are observed.

electron (e-e) scattering coefficient A (in ρ = ρ0 + AT 2)
diverges as A(H) ∝ (H − H∗

A)−α, with H∗
A # Hc2 and

α # 4/3. At higher temperatures, a systematic anal-
ysis of ρ(T ) in the NFL regime (i.e. ∆ρ ∝ T n) shows
that the zero-field T -linear temperature dependence un-
dergoes a qualitative change with increasing field: the
shape of ρ(T ) begins to deviate from linearity, and sub-
T -linear power laws (i.e. n < 1) develop over a sizable
range spanning more than a decade in temperature. As
shown by the linearity of ρ vs. T n in Figs. 1(a) and 1(b),
this power law evolves from n = 1 at zero field to n = 2/3
at high fields. The range of validity is one decade in both
cases: from Tc = 2.3 K to ∼ 20 K in H = 0, and from
T ∗ = 1 − 2 K to ∼ 25 K in H ≥ 12 T.

Typically, the phase diagrams of systems tuned
through a QCP are characterized by a single power law
of ρ(T ) throughout the NFL regime [2, 5, 6, 7, 9, 25].

In CeCoIn5, the evolution of the exponent n, from lin-
ear to sub-linear with increasing field, is unusual. Fur-
thermore, it is non-monotonic, with the smallest value
observed in a small region near the critical field (shaded
area in Fig. 1(c)), where n # 0.45 between ∼ 0.5 K and
∼ 8 K at 5.1 T. Near this field, there is a qualitative
change in transport properties which appears as a sign
change in the magnetoresistance (MR), from positive at
low H to negative at high H (see data in Fig. 1(c)).

The field evolution of the transport power law, together
with the MR crossover, are indicative of competing en-
ergy scales, and may indeed be a consequence of the
presence of two QCPs. A scenario involving two distinct
QCPs has recently been identified in the heavy-fermion
superconductor CeCu2Si2, where competing magnetic
and mixed-valence states give rise to two separate super-
conducting phases as a function of lattice density [26].
In the case of CeCoIn5, the two QCPs may involve two
distinct groups of Fermi surfaces, for example.

It is instructive to compare CeCoIn5 to its close cousin
CeRhIn5. At ambient pressure and zero field, the former
is a superconductor with Tc = 2.3 K and the latter is
an antiferromagnet with TN = 3.8 K. Under an applied
pressure of 21 kbar, CeRhIn5 develops a superconduct-
ing state [20], with a Tc similar to that of CeCoIn5 but
with a zero-field resistivity that is not linear in temper-
ature. Rather, as shown in Fig. 1(b), CeRhIn5 displays
a T 2/3 dependence, with a prefactor and range that are
comparable to that of CeCoIn5 at high field.

Although this common behaviour occurs in different
regions of phase space for the two materials (i.e. at dif-
ferent pressure and field values), it is worth noting that
the T 2/3 dependence in CeRhIn5 exists in a region where
this system is on the verge of developing long-range AFM
order [21]. The observation of a similar power law in
NaxCoO2 [12], a compound seemingly unrelated but close
to a spin-density wave instability, suggests that the 2/3
exponent may be characteristic of a more general set
of systems close to an ordering instability. It has been
suggested [4] that when several bands cross the Fermi
surface, Umklapp-type scattering may enforce the same
T -dependence in ρ as the ω dependence in the single-
particle self-energy. It is thus tempting to relate the T 2/3

behaviour to an ω2/3 dependence of the imaginary part of
the fermionic self-energy obtained in some recent calcu-
lations considering various Fermi liquid instabilities [23].

In order to gain insight into the origin of the T 2/3

resistivity, as well as the role of magnetic field as a tuning
parameter, it is necessary to understand the relationship
between the relevant energy scales: H and T . In Fig. 2,
we show that for H ≥ 8 T, the resistivity data can be
scaled as a function of ∆Hγ/T (where ∆H = H − H∗)
with an exponent γ = 1.0±0.02. This relationship, which
spans both the FL and NFL regimes, indicates that upon
crossing T ∗ the dominant energy scale is transferred from
temperature to magnetic field, confirming that ∆H is
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A Drastic Change of the Fermi Surface at a Critical Pressure in CeRhIn5:

dHvA Study under Pressure
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We carried out the de Haas–van Alphen (dHvA) experiment for an antiferromagnet CeRhIn5 at high
pressures up to 3GPa. The cross-sectional areas of the Fermi surfaces due to main dHvA branches !i and
"2 at ambient pressure, which are well explained by two kinds of nearly cylindrical Fermi surfaces of a
non-4f reference compound LaRhIn5, are unchanged up to about 2.3GPa, while the corresponding
cyclotron masses m!

c increase steeply above a pressure P! ¼ 1:6GPa where pressure-induced
superconductivity sets in : m!

c = 5.5m0 at ambient pressure, 20m0 at 1.6GPa and 60m0 at 2.2GPa
for branch "2, for example. Above 2.4GPa, new dHvA branches appear, which are in good agreement
with the corresponding dHvA branches of a 4f-itinerant heavy fermion superconductor CeCoIn5,
indicating that the 4f electron of CeRhIn5 becomes itinerant and significantly contributes to the volume
of the Fermi surface. The 4f-electron character is thus changed from localized to itinerant at a critical
pressure Pc ’ 2:35GPa, where the superconducting transition temperature becomes a maximum.

KEYWORDS: CeRhIn5, dHvA effect, superconductivity, quantum critical point
DOI: 10.1143/JPSJ.74.1103

The cerium and uranium compounds form heavy fermions
at low temperatures, which is a consequence of competition
between the Ruderman–Kittel–Kasuya–Yosida (RKKY)
interaction and the Kondo effect. A high-pressure technique
is useful in tuning the electronic states in these compounds.
When pressure is applied to the magnetically ordered cerium
and uranium compounds, the ordering temperature Tmag

decreases and becomes zero (Tmag ! 0) at a critical pressure
P ¼ Pc. Surprisingly, superconductivity is observed around
Pc as in an antiferromagnet CeRhIn51) and a ferromagnet
UGe2.2)

CeTIn5 (T: Co, Rh and Ir) crystallizes in the tetragonal
crystal structure. The uniaxially distorted AuCu3-type layers
of CeIn3 and the TIn2 layers are stacked sequentially along
the ½001$ direction (c-axis). CeCoIn5 and CeIrIn5 reveal
superconductivity at ambient pressure,3) whereas CeRhIn5
orders antiferromagnetically below TN ¼ 3:8K. With in-
creasing pressure, the Néel temperature TN in CeRhIn5
increases, has a maximum around 1GPa, and decreases with
further increasing pressure. A smooth extrapolation indicates
TN ! 0 at a pressure P ¼ 2:3{2:5GPa. CeRhIn5, however,
reveals superconductivity over a wide pressure region from
P! ¼ 1:6 to 5.2 GPa.1,4,5) Its transition temperature Tsc has a
maximum around 2.3–2.5GPa, with Tsc ¼ 2:2K. This
pressure in the range of 2.3–2.5 GPa is supposed to be a
critical pressure Pc in CeRhIn5, where the antiferromagnetic
state is changed into a paramagnetic state and also the heavy
fermion state is most likely realized in this compound.

The topologies of the main Fermi surfaces in CeRhIn5 are
nearly cylindrical, and are found to be approximately the
same as thoes in a non-4f reference compound LaRhIn5, as
shown in Fig. 1(a), indicating that the 4f electron in
CeRhIn5 is localized and does not contribute to the volume
of the Fermi surfaces.6–8) In fact, an ordered moment of the
4f electron is about 0.8#B/Ce.9) On the other hand, the main
Fermi surfaces in CeCoIn5 without magnetic ordering are
also nearly cylindrical but are identified by the 4f -itinerant
band model, as shown in Fig. 1 (b).7,10) The topologies of the

two kinds of cylindrical Fermi surfaces in CeCoIn5 are
similar to thoes in CeRhIn5, but one 4f-electron in each Ce
site becomes a conduction electron in CeCoIn5. The detected
cyclotron masses in the range of 5–87m0 in CeCoIn5 are
extremely large, reflecting a large $ value of 1000mJ/
(K2%mol).3,10,11) It is noted that the d electrons in the T atom
hybridize with the 5p electrons of In in CeTIn5 and also
LaTIn5, which results in a small density of states around the
Fermi energy. This means that there are very few conduction
electrons in the TIn2 layer and hence the Fermi surface
mainly consists of the two kinds of cylindrical Fermi
surfaces shown in Fig. 1.

In order to elucidate the nature of the electronic state in
the pressure-induced superconductor CeRhIn5, we carried
out the de Haas–van Alphen (dHvA) experiment at high
pressures up to 2.1 GPa.5) The cyclotron effective mass of
the conduction electrons named branch "2 in Fig. 1(a)
increases from 5:5m0 at ambient pressure to 20m0 at
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Fig. 1. Theoretical Fermi surfaces in (a) LaRhIn5 (CeRhIn5) and (b)
CeCoIn5. Small Fermi surfaces are not shown.
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5:56! 107 Oe (m"
c ¼ 15m0) in !1, 4:53! 107 Oe (18m0) in

!2 and 4:24! 107 Oe (8:4m0) in !3, as shown in Fig. 3(c).10)

The origin of branch A is not clear, but branch A is close to
branch " with F ¼ 1! 107 Oe in CeCoIn5, which was,
however, not observed experimentally along H k ½001% in
CeCoIn5.10) Here, branch " in CeCoIn5 is identified as a band
13-hole nearly spherical Fermi Fermi surface, not shown in
Fig. 1(b).

To elucidate a change of the Fermi surface properties
under pressure, we show in Figs. 4(a) and 4(b) the pressure
dependences of the dHvA frequency and the cyclotron mass,
respectively. The dHvA frequencies for the main dHvA
branches named "2, !1 and !2;3, together with those for
branches named a, b and c in Fig. 4(a) are approximately
unchanged up to about 2.3GPa, as reported previously,
although the previous experiments were carried out up to
2.1GPa.5) These branches, however, disappear completely at
2.35GPa, and another two branches with F ¼ 4:23! 107 Oe
(m"

c ’ 30m0) and 4:03! 107 Oe (20m0) appear. Further-
more, new branches !3 and A appear abruptly at 2.4GPa,
which are connected with the branches at 2.9 GPa.

We note that the branches at 2.35GPa appear from 1.8 to
2.35GPa, which are shown by small closed circles in Fig. 4.
The origin of these branches is unknown, but these branches
might be produced by a possible change of the antiferro-
magnetic structure, as observed in the similar dHvA experi-
ment under pressure for an antiferromagnet CeRh2Si2.14,15)

From the neutron scattering experiment, the helical magnetic
structure and the ordered moment were observed to be

almost unchanged up to 1.63GPa,9) but are not clear at
higher pressures.

Furthermore, we note that the present dHvA experiment
was carried out in high magnetic fields up to 169 kOe. Even
in the high fields, CeRhIn5 is in the antiferromagnetic state
at ambient pressure because the magnetization for H k ½001%
indicated neither a metamagnetic transition nor a saturated
feature in magnetic fields up to 500 kOe.16) The dHvA
branches a, b, etc., which are not observed in LaRhIn5, are
characteristic in an antiferromagnet CeRhIn5. These branch-
es are observed continuously in the present measured field
range even under pressures approximately up to Pc,
suggesting an antiferromagnetic state in the present dHvA
experiment.

As shown in Fig. 4, the cyclotron masses of main
branches "2 and !2;3 increase steeply above 1.6GPa, where
superconductivity sets in: 5:5m0 at ambient pressure, 20m0

at 1.6GPa and 60m0 at 2.2GPa for branch "2, where the
cyclotron mass was determined in the field range from 100
to 169 kOe, namely at an effective field Heff ¼ 126 kOe.
This is approximately consistent with the pressure depend-
ence of the # value : 50–60mJ/(K2&mol) at ambient pressure
and 380mJ/(K2&mol) at 2.1 GPa.13) On the other hand, the
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of branch b2 ðm!
c ¼ 5:7m0Þ at ambient pressure reaches

about 40m0 at 2 GPa:
Fig. 2(b) shows the pressure dependence of the

cyclotron mass m!
c of branch b2 in CeCoIn5 which was

determined at H ¼ 14 T: The cyclotron mass decreases
with increasing pressure. The cyclotron mass of branch
b2 ðm!

c ¼ 58m0Þ at ambient pressure decreases down to
38m0 at 3 GPa: We note that the cyclotron mass is
strongly field-dependent at ambient pressure [7], but the
cyclotron mass is unchanged on the field at about
3 GPa:

These results indicate that CeRhIn5 approaches the
quantum critical region with increasing pressure, while
CeCoIn5 deviates from it with increasing pressure.
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similar to UGe2 
(Lonzarich’stalk) 
but AFM vs FM
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Multiple Energy Scales in Quantum Critical Regime

Finite energy scales TSF, TQP in QC regime. 

J. Paglione et al, cond-mat/0605124
Finite TFL at QCP from resistivity.
Courtesy J. Flouquet (unpublished)

Gegenwart et al, cond-mat/0604571

Finite low-energy scale near
Kondo breakdown QCP
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  Conclusions

•  Strong experimental evidence for anomalous quantum 
criticality in HF compounds

•  Breakdown of the conventional techniques which integrate out 
the fermions for (almost all?) models below d=3.

• Fractionalization-deconfinement and emerging spin liquid 
represent the state of the art to explain the data

• Better theories (and methods)  needed ... for example  
                  Ads/CMT or ... a new bosonization technique ?
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