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Apologies

• This talk will is not directly related to AdS/CFT

• see Omid Saremi, DTS, arXiv:1103.4851

• Galilean invariance plays important role

• relativistic case: Fradkin Hughes Leigh 2011

• relativistic compressible fluids: Nicolis & Son ’11

• We are new to the subject, please criticize



What is Hall viscosity?

ji = �vi

T ij = �vivj + P �ij � �Vij Vij =
1
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(�iv
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In 2 spatial dimensions, it is possible to write

T ij = · · ·� �H(�ikV kj + �jkV ki)

Hall viscosity (Avron Seiler Zograf) 

breaks parity

Standard fluid dynamics: �t� + �ij
i = 0

�tj
i + �jT

ij = 0
continuity eq.

Navier-Stokes eq.

dissipationless



Hall viscosity in picture

Hall shear stress



Quantum Hall state

• simplest example: noninteracting electrons filling n Landau 
levels

• gapped, no low-energy degree of freedom

• The effective action can be expanded in polynomials of 
external fields

• To lowest order: Chern-Simons action
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�
d3x �µ��Aµ��A�
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e2

�



Symmetries of NR theory
Microscopic theory

Dµ� � (�µ � iAµ)�

Gauge invariance: � � ei�� Aµ � Aµ + �µ�

General coordinate invariance:

�gij = ��k�kgij � gkj�i�
k � gik�j�

k

�Ai = ��k�kAi �Ak�i�
k

�� = ��k�k� � L��

� L�Ai

� L�gij

Here ξ is time independent: ξ=ξ(x) 

�A0 = �k�kA0� L�A0

DTS, M.Wingate 2006 
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NR diffeomorphism

• These transformations can be generalized to be 
time-dependent: ξ=ξ(t,x)

�� = �L��

�A0 = �L�A0�Ak �̇k

�Ai = �L�Ai�mgik �̇k

�gij = �L�gij

Galilean transformations: special case  ξi=vit



Where does it come from
Start with complex scalar field
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Take nonrelativistic limit:
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Relativistic diffeomorphism

μ=0: gauge transform

μ=i: general coordinate transformations

xµ � xµ + �µ

� = e�imcx0 ��
2mc



Interactions

• Interactions can be introduced that preserve 
nonrelativistic diffeomorphism

• interactions mediated by fields

• For example, Coulomb interactions

S = S0 +
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dt d2x
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g a0(�†� � n0) +
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Is CS action invariant?
• CS action is gauge invariant

• CS action is Galilean invariant

• CS action is not diffeomorphism invariant

�SCS =
�m

2�

�
dt d2x �ijEigjk �̇k

Higher order terms in the action should changed by -δSCS 

But this cannot be achieved by local terms



Resolution

• Higher order terms contain inverse powers of B

• Quantum Hall state with diff. invariance does not 
exist at zero magnetic field

�µ��Aµ��A� +
m

B
gijEiEj + · · ·

Let us first discuss power counting
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Power counting
• B gives rise to 

• magnetic length l ~ B-1/2

• Lamor frequency ω=B/m

• Assume ∂i~εB1/2,  ∂0~ε2B/m    (z=2)

�Ai �
B1/2

�
, �A0 �

B

m
, �gij � 1

Slowly varying, nonlinear external fields

�B � B, �A0 � µ, �gij � 1

E � �
B3/2

m



Wen-Zee term

• Hall viscosity: described by Wen-Zee term 
(W.Goldberger & N.Read unpublished; N.Read 
2009 KITP talk)

• Introduce spatial vielbein (viel=2) gij=eai eaj

• We can now define the spin connection

�i =
1
2
�abeaj�ie

bj �0 =
1
2
�abeaj�0e

bj

Vielbein defined up to a local O(2) rotation

ea
i � ea

i + ��abeb
i �µ � �µ � �µ�

like an abelian gauge field



Vielbein and curvature

�1�2 � �2�1 =
1
2
�

g R



Wen-Zee terms

1
2�

�µ��(� �µ��A� + ���µ����)

in addition to the Chern-Simons term

O(ε2) O(ε4)

will be taken
into account

will be
neglected

The first term gives rise to
•Wen-Zee shift
•Hall viscosity



Wen-Zee shift

• Rewrite SWZ as 

�

2�
�µ��Aµ���� =
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�
g A0R + · · ·

Q =
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d2x
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g j0 =
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d2x
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g
� �
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4�
R

�
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Total particle number:

IQH states: ν=n, κ=n2/2
Laughlin’s states: ν=1/n, κ=1/2

On a sphere: Q = �(N� + S), S =
2�

�

‘shift’



Hall viscosity from WZ term

SWZ = � �B

16�
�ijhik�thjk + · · ·

�a =
�B

4�
=

1
4
Sn

derived by N.Read 
previously



All diff invariant terms up to O(ε2)
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black: O(ε0) blue: O(ε2)



Kohn’s theorem

• Current-current correlator at q=0, ω≠0 
completely fixed: motion of center of mass

• Effective action captures next-to-leading order 
corrections to conductivities at q=0

�xy =
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�2
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σxy(q)
y

v

E

E

v
x

Ex = E eiqx

jy = �xy(q)Ex

From effective field theory

�xy(q)
�xy(0)

= 1 + C2(q�)2 +O(q4�4)

C2 =
�a

�n
� 2�

�

�2

��c
B2���(B)

S/4

also found by B.Bradlyn, M.Goldstein, N.Read



Physical interpretation

• First term: Hall viscosity

y
v

E

E

v
x

�xvy + �yvx �= 0

Txx = Txx(x) �= 0

additional force Fx~∂x Txx

Hall effect: additional contribution to vy



Physical interpretation (II)

• 2nd term: more complicated interpretation

Fluid has nonzero angular velocity

�(x) =
1
2
�xvy = �cE�

x(x)
2B

�B = 2mc�/e

Coriolis=Lorentz

Hall fluid is diamagnetic: d� = �MdB

M is spatially dependent M=M(x)

Extra contribution to current j = c ẑ��M



Current ~ gradient of magnetization

j = c ẑ��M



High B limit

• In the limit of high magnetic field: ϵ(B) known: free 
fermions

• n Landau levels for IQH states

• first Landau level for FQH states with ν<1

• Wen-Zee shift is known 

�xy(q)
�xy(0)

= 1� 3n

4
(q�)2 +O(q4�4)

�xy(q)
�xy(0)

= 1 +
2n� 3

4
(q�)2 +O(q4�4), � =

1
2n+1

IQH, can be checked 
for non-interacting electrons

but valid also for interacting case

exact



Comments on Hall viscosity

• Standard definition of Hall viscosity: stress induced by 
shear

• Haldane: stress induced by spatially varying electric field

• We found that it gives one contribution to the Hall 
conductivity at small, finite q

• Can σxy(q) be measured?


