
Recent Updates of 
Holographic Entanglement Entropy 

Tadashi Takayanagi 

(IPMU, the University of Tokyo)

KITP Program: Holographic Duality and Condensed Matter Physics 



Contents

① Introduction

② Holographic Entanglement Entropy (HEE)

③ Can HEE Probe Fermi Surfaces ? 
[Ogawa-Ugajin-TT, in preparation]

④ HEE and Holographic Dual of BCFT  
[TT Phys.Rev.Lett 107:101602,2011 [arXiv:1105.5165]

Fujita-Tonni-TT, arXiv:1108.5152, to appear in JHEP]

⑤ Conclusions



① Introduction

Holography (e.g. AdS/CFT  [Maldacena 97] ) 

⇒ Non-perturbative Definition of Quantum Gravity
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To understand the holography better and to explore the holography 

in general setups, we need suitable universal physical quantities.                  

Stationary BH ⇒Mass M, Charge Q, Spin J.                 

(Thermodynamics)

Generic  spacetime ⇒ We need much more quantities !

(Non-equilibrium, Topological, etc.)  

For this purpose, the entanglement entropy (EE) is a very useful 

quantity.   [⇔ In cond-mat. , EE is useful to characterize quantum    

structures of ground states.]



Divide a quantum system into two subsystems A and B.

We define the reduced density matrix         for A by

taking trace over the Hilbert space of B .
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Now the entanglement entropy        is defined by the 

von-Neumann entropy

In QFTs,  it is defined geometrically:
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Various Applications in other subjects

• Quantum Information and Quantum Computing

EE = the amount of quantum information
[see e.g. Nielsen-Chuang’s text book 00]

• Condensed Matter Physics

EE = Efficiency of a computer simulation (DMRG)  [Gaite 03,…]

Divergent at quantum critical points !

[G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, 02,…]

A new quantum order parameter !
[Topological entanglement entropy:  Kitaev-Preskill 06,  Levin-Wen 06]



Basic property: Area law 

EE in d+1 dim. QFTs (in ground states) includes UV divergence

[Bombelli-Koul-Lee-Sorkin 86,  Srednicki 93]

where       is a UV cutoff (i.e. lattice spacing).

A comment:  The holographic EE predicts that the area law

is always true for any QFT if there is a UV fixed point.

Similar to the Bekenstein-Hawking formula of black hole entropy   

[ EE = loop corrections to BH entropy,

Susskind-Uglum 94,…] 
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(2-1) Holographic Entanglement Entropy Formula   
[Ryu-TT 06]
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• In spite of a heuristic argument [Fursaev, 06] , there has been no 

complete proof.  But, so many evidences and no counter examples.

[A Partial List of Evidences]

 Area law follows straightforwardly [Ryu-TT 06]

 Agreements with analytical 2d CFT results for AdS3 [Ryu-TT 06]

 Holographic proof of strong subadditivity [Headrick-TT 07]

 Consistency of 2d CFT results for disconnected subsystems               

[Calabrese-Cardy-Tonni 09]   with our holographic formula  [Headrick 10] 

 Agreement on the coefficient of log term in 4d CFT (~a+c)

[Ryu-TT 06, Solodukhin 08,10, Lohmayer-Neuberger-Schwimmer-Theisen 09,  

Dowker 10, Casini-Huerta, 10,  Myers-Sinha 10] 

 A direct  proof  when A = round ball   [Casini-Hueta-Myers 11] 

 Holographic proof of Cadney-Linden-Winter inequality 

[Hayden-Headrick-Maloney 11]



Holographic Proof of Strong Subadditivity [Headrick-TT 07]

We can easily derive the strong subadditivity, which is known as 

the most important inequality satisfied by EE. [Lieb-Ruskai 73]
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Tripartite Information [Hayden-Headrick-Maloney 11]

Recently, the holographic entanglement entropy is shown 

to have a special property called monogamy.

Comments:  

(i) HEE argues that this is true for large N gauge theories. 

(ii) This property is not always true for QFTs.  

(iii) In 2+1 dim. mass gapped theories, this argues that  the topological 
entanglement entropy is non-negative.

(iv) This property is also confirmed in  time-dependent examples.
[Balasubramanian-Bernamonti-Copland-Craps-Galli 11,  Allais-Tonni 11]
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• The area formula of HEE assumes the supergravity
approximation (i.e. strongly coupled limit and large N limit).

⇒ The holographic formula is modified by higher derivatives.

(deviations from strongly coupled limit, but still large N)

⇒ A precise formula was found for Lovelock gravities.
[Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11]       

Ex. Gauss-Bonnet Gravity   

[But for general higher derivative theories, this is hard !]  
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Comments

• In the presence of a black hole horizon, the minimal surfaces 
typically wrap the horizon.  

⇒ Reduced to the Bekenstein-Hawking entropy, consistently.

• We need to replace minimal surfaces with extremal surfaces in 
the time-dependent spacetime.     [Hubeny-Rangamani-TT 07]
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(2-2) Explicit Calculations of HEE

Two analytical examples of the subsystem A:

(a) Infinite strip (b) Circular disk 
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Entanglement Entropy for (a) Infinite Strip from AdS

divergence law Area

 cutoff.  UVon the

 dependnot  does and finite is  termThis

d=1 (i.e. AdS3) case:                                               
Agrees with 2d CFT results 
[Holzhey-Larsen-Wilczek 94 ; 
Calabrese-Cardy 04]



Basic Example of AdS5/CFT4

The order one deviation is expected since the AdS result 

corresponds to the strongly coupled Yang-Mills. 
[cf.  4/3  in thermal entropy,  Gubser-Klebanov-Peet 96]
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Entanglement Entropy for (b) Circular Disk from AdS
[Ryu-TT 06]

divergence

 law Area

Conformal Anomaly
(~central charge)
2d CFT     c/3・log(l/ε)
4d CFT     -4a・log(l/ε)

A universal quantity in
odd dimensional CFT ?
(Note: in mass gapped theories

this is the topological EE.)



Comments:  EE in Odd dim. CFT (e.g. 2+1 dim.)

Recently, [Casini-Hueta-Myers 11] proved for any odd dim. CFTs:

if  the subsystem A = d dim. round ball.

Also,  in this setup, [Myers-Sinha 10] proved that the 

holography  tells us that the finite part of          monotonically 

decreases under the RG flow.  

⇒ A `c’-theorem for odd dim. QFTs

EE = `c-function’  .



(2-3) HEE and Thermalization
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Time Evolutions of HEE under Quantum Quenches 

In 1+1 dim. CFTs, we expect 

a linear growth of EE after a 

quantum quench.                                                  
[Calabrese-Cardy 05]

Causality → HEE reproduced the same result.

In higher dim., the thermalization time depends on the shape of A.

HEE predicts:  A = strip → ,      A = round disk →
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③ Can HEE probe Fermi Surfaces ?
[Ogawa-Ugajin-TT, in preparation]

(3-1)  Logarithmic Violation of Area Law

In d dim. lattice models that the area law of EE is violated 
logarithmically in free fermion theories. [Wolf 05, Gioev-Klich 05]

Comments:  

(i)  This property can be understood from the logarithmic EE in 2D 
CFT, which approximates the radial excitations of fermi surface.

(ii) It is natural to expect that this property is true for non-Fermi 
liquids.    [Swingle 09,10,  Zhang-Grover-Vishwanath 11 etc.]
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Note  in this lattice calculation assumes

Instead,  in our holographic context which corresponds to a 

continuous limit, we are interested in the case                          .

In this case, we expect

Below we would like to see if we can realize this behavior in HEE.

We assume that all physical quantities can be calculable in the 

classical gravity limit ( ⇔ Fermi surfaces).
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(3-2) Holographic Construction

The metric ansatz: 

(Below we work d=2 i.e. AdS4/CFT3 setup.)

The logarithmical behavior of EE occurs iff

Note: f(z) does not affect the HEE. 

is dual to the fermi energy.
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(3-3) Null Energy Condition

To have a sensible holographic dual, a necessary condition is 

known as the null energy condition:

In the IR region, the null energy condition argues

The specific heat behaves like

Notice that this excludes standard Landau fermi liquids.
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In summary,  we find that classical gravity duals only allow            

non-fermi liquids.   

Comments:  

(i) Our definition of classical gravity duals is so restrictive that 

it does not include  either the emergent AdS2 geometry 

[Faulkner-Liu-McGreevy-Vegh 09, Cubrovic-Zaanen-Schalm 09]  nor the electron 

stars (or Lifshitz) [Hartnoll-Polchinski-Silverstein-Tong 09, Hartnoll-Tavanfar 10] .
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(iii) We can embed this background in an effective gravity theory:

if   W and V behave in the large φ limit  as follows
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④ HEE and Holographic Dual of BCFT

(4-1) AdS/BCFT 

What is a holographic dual of CFT on a manifold with 

Boundary (BCFT) ?         

CFTd:  SO(d,2)  ⇔ AdSd+1

BCFTd:  SO(d-1,2) ⇔ AdSd

?

[Earlier studies:  Karch-Randall 00 (BCFT,DCFT),…

Bak-Gutperle-Hirano 03, Clark-Freedman-Karch-Schnabl 04 (Janus CFT)]
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AdS/BCFT Proposal [Fujita-Tonni-TT 11] 

In addition to the standard AdS boundary M, 

we include an extra boundary Q, such that ∂Q=∂M.

EOM at boundary leads to 

the Neumann b.c. on Q :
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(4-2) Simplest Example 

Consider the AdS slice metric:

Restricting the values of ρ to                              solves the

boundary condition with
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The boundary entropy [Affleck-Ludwig 91] 

Sbdy measures the degrees of freedom at the boundary.  

The g-theorem:

Sbdy monotonically decreases under the RG flow in CFT.

[proved by Friedan -Konechny 04]

Definition 1 (Disk Amplitude)

It is simply defined from the disk amplitude
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Definition 2 (Cylinder Amplitude)

Definition 3 (Entanglement Entropy)

In 2D BCFT, the EE generally behaves like

[Calabrese-Cardy 2004]
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In our setup,  HEE can be found as follows

[Earlier calculations:  Azeyanagi-Karch-Thompson-TT 07  (Non-SUSY Janus),

Chiodaroli-Gutperle-Hung, 10   (SUSY Janus) ]

Also                               can be confirmed in other two definitions.
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(4-4) Holographic g-Theorem

Consider the surface Q  defined by                in the Poincare metric

We impose the null energy condition for the boundary matter

i.e.                                for any null vector       .
[cf.  Hol. C-theorem:  Freedman-Gubser-Pilch-Warner 1999,  Myers-Sinha 2010]

For the null vector, 

we find the constraint  
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Thus we simply get                   from the null energy condition.

Define the holographic g-function:

Then we find

because                                      .

For d=2, at fixed points                 agrees with the boundary entropy.

For any d,               is a monotonically decreasing function w.r.t. z.

This is our holographic g-theorem !
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Example:  AdS4/BCFT3

In this case, we obtain
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Boundary central charge

As the usual central charge in 2 dim. CFT, we can define a 

boundary central charge in BCFT3 as follows:

In our holographic calculation, we obtain

Our holographic g-theorem leads to a c-theorem for         .

Our conjecture:  this is true for all BCFT3. 
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⑤ Conclusions

• The entanglement entropy (EE) is a useful bridge between  

gravity (string theory) and cond-mat physics. 

Gravity                        Entanglement Cond-mat.

systems

• Classical gravity duals  ⇒ Non-fermi liquids

• AdS/BCFT can be useful to  probe the boundary physics.  

The boundary central charge etc. 
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Future Problems

• Proof of HEE ?

• Complete Higher derivative corrections to HEE ?

• 1/N corrections to HEE ?

• More on HEE and Fermi Liquids ?

• HEE for non-AdS spacetimes ?

• What is an analogue of the Einstein eq. for HEE ?

• .

• . 

• Superconductors in AdS/BCFT ?

• Topological Insulators and AdS/BCFT ?

• .


