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Case for circumbinary gas disks driving
BH mergers

Consequences of gas driven BH mergers

(a) For gravitational wave signatures - finite
eccentricity at merger

(b) For the existence of electromagnetic
counter-parts to supermassive BH mergers

Can we distinguish gas driven mergers
from stellar dynamics eiffected ones?

Armitage & PN (2002, 2005)



Gas or stellar dynamics?

The case'for gas:
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The case for gas:
(2) There’s plenty of gas present

e Waves excited in a circumbinary
disk allow binary to lose angular
momentum to the gas

® Significant orbital decay requires
gas mass comparable to the mass
of the smaller black hole

@ Typical mass ratioq~ 0.1
(eg Volonteri, Haardt & Madau 2002)

Observationally: local BH mass density ~consistent with growth via
accretion as optically bright QSOs
(eg Barger et al. 2001; Yu & Tremaine, 2002)

' Implies more than enough gas present - important for mergers
unless stellar dynamics merges the holes before gas arrives



Expectations for gas driven mergers

(1) Definite predictions

Transition between:
- gas driven merger at large radius
- gravitational radiation inspiral at small radius
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...transition radius depends on disk parameters and mass ratio
(2) Probable consequences

Disk interaction —> significant eccentricity of the binary
- probably for q > 0.05 (Papaloizou, Nelson & Masset 2001)
- possibly for lower q (Goldreich & Sari 2002)

Spin of the primary -> warped disk interior to the binary orbit
- timescale for realignment uncertain (Natarajan & Pringle 1998)



Disk response to a perturber

grows slowly, so that the disk is in almost
a steady state

from q=10-° to 102
2D, hydro only

viscosity included such that alpha ~ 0.01
in the vicinity of the secondary.

In movie: inset shows azimuthally
averaged surface density profile.
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Consequences for electromagnetic counterparts

LISA will fail to identify host galaxies of supermassive black hole
mergers unless there are identifiable electromagnetic counterparts
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If a thin disk is involved, predict electromagnetic counterpart
closely resembling a highly obscured, luminous quasar
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Counter-parts signaling BBH
mergers

Electromagnetic counterparts: precursors and
afterglows

On longer timescales impulsive changes to the
final BH spin following merger (Hughes &
Blandford)

Changes in directions of jets launched (Merritt
& Ekers)

Final eccentricity before merger (Armitage &
PN) if disks catalyze low mass ratio binary
mergers
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Consequences for gravitational radiation

Disk torques are negligible during final inspiral for all interesting
mass ratios

Eccentricity - if excited during disk interactions at low q, may not
have time to damp to negligible values

Simple model:

merger

- assume eccentricity driven

to e=0.25 for a > a "

- for a<a 4, eccentricity is
damped by gravitational
radiation

week before
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- plot eccentricity at 1 week
prior to final merger

- small but non-zero e ~ 0.01,
rising to more extreme mass
ratios, seems possible 0.001

eccentricity at

Eccentricity during disk migration
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Cool disk (h/r ~ 0.05): red, Warm disk (h/r ~ 0.1): green,

Hot disk (h/r ~ 0.1): blue

Note hottest disk is the most viscous disk
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alpha = 0.01, e_init = 0.25 (gas driven stage), M,+M,= 10°



Starting with a modestly eccentric orbit

same general behavior as before..



