

40 Signs of Supermassive Black Hole Binaries

or, what I did last summer...

Steinn Sigurơsson
Penn State

KITP June '06

Collaborators

- Dr Kelly Holley-Bockelmann
- Tamara Bogdanovic
- Miroslav Micic
- Britton Smith
- assorted...

In the beginning...

- use high resolution numerical sims to "tag" black hole formation and follow dynamical evolution
- effect of kicks (formation or merger)
- mock-up accretion history
- "dry" pop III mergers
- prompt accretion to SMBH

parametric

- choice of halo masses
- initial masses
- mass accretion histories
- offset in time from halo merger to BH merger
- explore dynamics in detail, trace baryons and possibilities of gas accretion

Micic, Abel \& Sigurdsson '06

Trajectories of presumptive IMBH formed in mini-halos at $\mathrm{z}=8.16$, through to $\mathrm{z}=1$, with the : assumption that the IMBH receive natal kicks with characteristic velocities of about $75 \mathrm{~km} / \mathrm{s}$. Most IMBH still reach the dominant halo, but many are decoupled from their parent minihalos and their density profile is much flatter.

Trajectories of IMBH from $\mathrm{z}=8.16$ to $\mathrm{z}=1$ under the assumption that the IMBH received . "maximal" natal kicks of about $200 \mathrm{~km} / \mathrm{sec}$. The IMBH now decouple from their parent minihalos; many fail to reach the local dominant halo, and their density profile is very flat.

Merger trees

- look at masses, mass ratios
- redshift history
- host galaxy
- LISA signals
- where and what failed to merge

Merger Tree: from $z=20-0$; halo masses

Late history

(low mass BH from $z>6$ can get stuck

- if halos are triaxial then some fraction explores inner kpc on ~ 100 dynamical time scales. Dynamical friction can then become effective, maybe.
- Look at stages of dynamical mergers, leverage off existing results

Boxes and boxlets in a triaxial potential including centrephilic and centrephobic orbits Flow to centre depends on fraction of centrephilic and chaotic orbits

Filling the loss-cone

- Triaxiality fills loss cones efficiently (cf Ostriker et al)
- possible role in EMRI
- Binary stars for SMBH interaction (cf Miller)
- SMBHB loss cone filling
- Combine with F-P diffusion and dyn fric

Hypervelocity stars

- Small \% of IC* may be ejected from SMBHB mergers in ellipticals.
- High Z, younger population
- Kinematic signature
- Maybe PNe and colour signature...

Holley-Bockelmann et al '06

VICS ACS field in Virgo

E-M signature

- Look at binaries in last few million years before merger
- Assume primary is accreting gas
- Look at interaction
- Luminosity profile
- spectroscopic signature - smoking gun?

Method

- Gadget

- Paczynski-Wiita potential (extend to pseudoKerr maybe)
- High res disk (~ 100,000 particles)
- Truncate inner disk and mimic accretion
- Optics

Madness

- Relativistic viewing, arbitary inclination, currently 2-D disk geometry, extend to 3-D
- cLoop code for cooling (Smith)
- full Z, non-solar Z, BB or H/He
- 10-10,000,000 K
- external radiation sources
- effective opacity (for T >> 1)
- Not full radiative transfer code!

Motive

- Initial conditions: masses, mass ratio, a, e, inclination
- Central illumination and local cooling
- Look at H α
- Lx vs $L_{\text {bol }}$ and x-ray spectral shape
- Quantify LISA sources and what they look like now, infer high z?

Cooling Times vs. Temperature for $\mathrm{n}=10^{4} \mathrm{~cm}^{-3}$

B. Smith (thesis)

Smith, Sigurdsson \& Abel `06

$2^{\text {nd }}$ star
transition from Pop III to Pop II

SMBHB interaction

- Initial:
- High mass, primary gas only, coplanar, high eccentricity
- pro \& retrograde, exploring q
- out-of-plane next
- quasi-circular needs refined I.C.s
- Very finest in SPH simulations!

Time $(y r)=0.088$

Accretion rate on primary and secondary

Trailed of two orbits
showing me spectrogram an velocity and orbital structure

Preliminary Results

- Clear H α signature, but viewing geometry matters.
- Look for in synoptic sky surveys
- followup to confirm
- Correlate spectra with x-ray and bolometric signature
- Periodic x-ray flaring (eccentricity sensitive?)
- x-ray hardness variation

Conclusions

- More simulations...
- explore parameter space
- compare with observations, possible current candidate local AGNS
- OJ287 anyone? ;-)
- Tie it all together...

THIS SLIDE DELIBERATELY LEFT BLANK

