Cosmic Star formation history associated with QSO activities
 -An approach using black hole to bulge massu correlation

Yiping Wang

 (IIIIIPurple Mountain Observatory, Nanjing
National Astronomical Observatory of China, Beijing

AGN06, KITP (July 6, 2006)

Overview of this talk

I. Cosmic star formation history studies
II. A co-evolving scheme of BH growth and the SF in the host galaxy (Wang \& Biermann A\&A 334, 87, 1998)
III. Cosmic star formation history estimation based on X-ray deep surveys (Wang, Yamada \& Taniguchi, ApJ 588, 113, 2003)
IV. Future works ?

Observations of galaxy formation history

First cosmic star formation history (1996-1997)

The perspective of sub-mm

 (thermal dust emission, Sanders,
1999)

$$
\begin{aligned}
& \mathrm{AGNO}^{\mathrm{N}} \\
& \text { Ot all. }
\end{aligned}
$$

The Build-Up of Stellar Mass

Rudnick et al 2006

Sample and observation:

1) $\mathrm{Lv}>3 \times 10^{\wedge} 10 \mathrm{~L}$ sun at rest frame
2) Optical(HST)---NIR(VLT)
3) Four disjoint deep fields (HDF-S, HDF-N, MS1054-03, CDF-S)

The Evolution of Intense Starbursts

A few questions?

I. When did star formation start?
II. When were half of the stars formed?
III. Are we at the end of star-formation?
IV. Are all relevant sources included

- Faint
- Obscured AGN fraction? or old

A co-evolving scheme of BH growth and the

SF in the host galaxy Wang \& Biermann A\&A 334, 87, 1998

Motivations:

1. Mbh/M_B, bulge in

$$
\begin{aligned}
& \text { nearby early type } \\
& \text { +AGNs }
\end{aligned}
$$

2. Starburst/AGN
Lx---Lco; Lx-Lir
3. Nuclear starburst/AGNs of merging galaxies

$$
\star \frac{\partial \Sigma}{\partial \mathrm{t}}=-\frac{1}{\mathrm{R}} \frac{\partial}{\partial \mathrm{R}}\left\{\left[\frac{\partial\left(\mathbf{R}^{2} \Omega\right)}{\partial \mathrm{R}}\right]^{-1} \frac{\partial}{\partial \mathrm{R}}\left(\nu \Sigma \mathrm{R}^{3} \frac{\partial \Omega}{\partial \mathrm{R}}\right)\right\}
$$

$$
-\frac{\Sigma}{t_{*}}\left(\mathbf{1}-\mathbf{R e}_{\mathrm{e}}\right)
$$

$$
\star \frac{\partial \Sigma_{*}}{\partial \mathrm{t}}=\Sigma / \mathbf{t}_{*}
$$

$$
\star \frac{\partial \mathrm{M}_{\mathrm{hh}}}{\partial \mathrm{t}}=-2 \pi \beta_{1} \mathrm{~V}_{\phi}\left[2 \mathrm{R} \Sigma+\mathrm{R}^{2} \frac{\partial \Sigma}{\partial \mathrm{R}}\right]_{\mathrm{R}=\mathrm{R}_{\mathrm{in}}}
$$

Parameters:

turbulent viscosity : $\quad \nu=\beta \mathrm{v}_{\phi} \mathbf{r} \quad$ (Dusch et al. 1997)
accretion time scale: $\quad \mathbf{t a c c}=\mathbf{r}^{2} / \nu=\mathbf{r} / \beta_{1} \mathbf{v}_{\phi}$ (Pringle 1981)
star formation timescale : $\quad \mathbf{t}_{*}=\alpha \mathbf{t}_{\mathbf{a c c}}=\beta_{2} \mathbf{r} / \mathrm{v}_{\phi} \Longrightarrow$ SFR $\sim \Sigma * V_{\phi} / \mathbf{r}$
mass return rate : $\quad R_{c}$
inner boundary radius: $\quad R_{\text {in }}$ rotation velocity : $\quad V_{\phi}$

Main results of the calculation I

Main results of the calculation II

Analytical limits:

Wang \& Biermann ACTA Astronomia Sinica 41, 410 (2000)

$$
\frac{\partial \Sigma}{\partial t}+\frac{1}{R} \frac{\partial}{\partial R}\left(\frac{F}{2 \pi}\right)=-\frac{\Sigma}{t_{*}}\left(1-R_{\mathrm{e}}\right)
$$

$$
g=R 2 \pi R \nu \Sigma 2 A=4 \pi R^{2} \nu \Sigma A
$$

$$
\frac{d M_{b h}}{d t}=-F(R=0)=-F\left(h=R V_{0}=0\right)
$$

$$
F=2 \pi R \Sigma V_{R}=-\frac{\partial g}{\partial h}
$$

$$
\tau_{*}=\text { const. } ; \nu=\text { const } .
$$

$$
\text { ratio }=\frac{M_{b h}}{\psi_{t o t a l}}=\frac{1-R_{e}}{2} \frac{\Gamma\left(-\frac{1}{2}, p\right)}{\Gamma\left(\frac{1}{2}, p\right)}
$$

$$
\nu=\beta_{1} R ; \quad \tau_{*}=\beta_{2} R
$$

$$
\text { ratio } \sim\left(1-R_{e}\right)\left(\frac{R_{0}}{R_{\max }}\right)^{(\sqrt{1+4 p}-1) / 2}
$$

$$
p=\frac{1-R_{e}}{\beta_{1} \beta_{2}}
$$

AGN evolution by deep, wide-area X-ray surveys (Miyaji et al. 2000, Ueda et al. 2003.....)

LDDE model:
----a best fit model for the X-ray number counts and background spectrum
A two power-law local SXLF:
$\mathrm{dF}(\mathrm{Lx}, \mathrm{z}=0) / \mathrm{dLogLx}=\mathrm{A}\left[\left(\mathrm{Lx} / \mathrm{L}^{*}\right)^{\wedge} \mathrm{r} 1+\left(\mathrm{Lx} / \mathrm{L}^{*}\right)^{\wedge} \mathrm{r} 2\right]^{\wedge}-1$
A luminosity-dependent density evolution: $\mathrm{dF}(\mathrm{Lx}, \mathrm{z}) / \mathrm{dLogLx}=\mathrm{dF}(\mathrm{Lx} /, 0) / \mathrm{dLogLx} * \mathrm{e}(\mathrm{z}, \mathrm{Lx})$

$$
\begin{aligned}
& \mathrm{e}(\mathrm{z}, \mathrm{Lx})=(1+\mathrm{z})^{\wedge} \max (0, \mathrm{p} 1-\mathrm{aLog}[\mathrm{La} / \mathrm{Lx}]) \\
&(1+\mathrm{z})^{\wedge} \mathrm{p} 1 \\
&\left.\mathrm{e}(\mathrm{zc}, \mathrm{Lx})[(1+\mathrm{zc}) /(1+\mathrm{zc})]^{\wedge} \mathrm{Lx} 2 \mathrm{La}\right) \\
& \\
&(\mathrm{z}<=\mathrm{zc}, \mathrm{Lx}>\mathrm{zc})
\end{aligned}
$$

Cosmic star formation history associated with accretion based on X-ray deep surveys

Strategies:

(Wang, Yamada \& Taniguchi, ApJ 588, 113, 2003)

1) LF and evolution by X-ray deep survey-----accretion history
2) Eddington ratio and duty circle "f_on"

$$
\epsilon=\frac{\eta \dot{m c^{2}}}{L_{\mathrm{Edd}}}, \quad M_{\mathrm{bh}}=\frac{\beta L_{\mathrm{x}}}{0.013 \epsilon}
$$

Basic ansatz:
$R(M b h / M s p h)$
~ constant
with redshift

$$
\epsilon \subset 10^{\gamma}(\log L-49) \quad \epsilon \sim 0.1-0.05
$$

$$
\frac{\mathrm{d} \Phi\left(z, M_{\mathrm{bh}}\right)}{\mathrm{d} M_{\mathrm{bh}}}=\frac{0.013 \epsilon}{\beta f_{\mathrm{on}}} \frac{\mathrm{~d} \Phi\left(z, L_{\mathrm{x}}\right)}{\mathrm{d} L_{\mathrm{x}}}
$$

$$
\frac{\mathrm{d} \Phi\left(z, M_{\mathrm{sph}}\right)}{\mathrm{d} M_{\mathrm{sph}}}=\frac{\mathrm{d} \Phi\left(z, M_{\mathrm{bh}}\right)}{\mathrm{d} M_{\mathrm{bh}}} / R\left(M_{\mathrm{bh}} / M_{\mathrm{sph}}\right)
$$

$$
\frac{\mathrm{d} \Phi\left(z, L_{850}\right)}{\mathrm{d} L_{850}}=f_{\mathrm{on}} \frac{\mathrm{~d} \Phi\left(z, M_{\mathrm{sph}}\right)}{\mathrm{d} M_{\mathrm{sph}}} \frac{\mathrm{~d} M_{\mathrm{sph}}}{\mathrm{~d} M_{\mathrm{L}_{\mathrm{s} 50}}}
$$

Type II AGNs, compton-thick objects and the model constraints

$$
\begin{array}{r}
\mathrm{R}_{2-1}=4 \mathrm{e}^{-\frac{\mathrm{L}_{\mathrm{x}}}{\mathrm{~L}_{\mathrm{s}}}}+\alpha(1+\mathrm{z})^{\mathrm{p}}\left(1-\mathrm{e}^{-\frac{\mathrm{L}_{\mathrm{x}}}{\mathrm{~L}_{\mathrm{s}}}}\right) \\
\mathrm{L}_{\mathrm{s}}=10^{44.3}
\end{array}
$$

1) present day black hole density $\sim 3-5 \times 10^{\wedge} 5 \mathrm{Msun} / \mathrm{Mpc}^{\wedge} 3$
2) SCUBA number counts comparison
3) Accretion history from Chandra limits
*4) Recent results from Spitzer

Comparison with Chandra deep survey

SCUBA number counts

Cosmic star formation history estimation:

Summary:

1) The CSFH associated with AGN accretion is approximately comparable to the dust corrected Madau plot . (we miss another half of the star formation in opt./UV deep surveys?)
2) The peak redshift of those massive spheroid formation seems to be in a redshift range of 1.5-2, not necessary to be much higher .
3) The FIR emission from the rapid star formation phase during MBH and spheroid formation could sufficiently account for the SCUBA number counts, could be the good candidates of SCUBA sources.
4) The abundance of the type II QSOs is within $\mathbf{1 - 2}$ with the constraints of local BH density and submm deep surveys, consistent with recent Chandra deep survey results.

NIR+MIR analysis of the submm background

Wang, Cowie \& Barger 2006

