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Mixing Length Theory 
versus improvements
• no error estimates (Kolmogorov 4/5 law: 

we get 4/5 ~ 0.85 with boundaries)

• no KE or acoustic Fluxes in MLT

• no deceleration at boundaries (Richardson 
criterion for mixing, buoyancy braking; 
alpha overshoot function of velocity, Brunt)

• static (Lorenz strange attractor)
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Step 1: 3D simulations 
of turbulent flow:

generate data!
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3D simulations by computer

• Oxygen fusion in stars: faster thermal relaxation

• ignore (for now) rotation and magnetic fields

• sectors, not whole stars (convective cells)

• Implicit Large Eddy Simulation (ILES)

• Only a range of Reynolds numbers, but 
turbulent

What do we do?
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ILES

• monotonic methods of shock capture (like 
PPM) give a sub-grid dissipation ~(dv)^3/dr

• this is consistent with the dissipation in the 
Richardson-Kolmogorov turbulent cascade

• no further “sub-grid” physics is needed (or 
desired)
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ε ≈ ∆u3/∆r

Bethe (1942): shock dissipation is a function of 
shock width and velocity difference

Kolmogorov (1942): turbulent kinetic energy 
dissipates as

ε ≈ u3
t /�

in terms of mean turbulent velocity and the
linear size of the turbulent region
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ob.4hp.l.s32.iso-bottom.boundary.mpg
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Nordlund & Stein: Solar Atmosphere

Multiple Pressure Scale Heights
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Porter and Woodward: red giant
Coupled convection and pulsation 
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Step 2: detailed 
quantitative analysis and 

theory construction
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a = a0 + a�

�a� = a0

�a�� = 0

Reynolds decomposition into average and 
fluctuating parts

overline is time average
angle bracket is angle average (3D-->1D)
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FP = P �u�

FK = ρEKu�

Acoustic and Turbulent Kinetic Energy Fluxes
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Dt�ρEK� = −∇ · < FK >

− ∇ · < Fp >

+ < P �∇ · u� >

+ < ρ�g · u� >

− εK .
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-9.92
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Turbulent KE Equation (terms in 1e43 ergs)

Mach Number ~0.01
Interior Convection zones have low Mach number in general

dot u’ with Navier-Stokes equation:

13



Subgrid dissipation versus Kolmogorov

convective boundary

convective boundary
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acoustic wave flux

Surface waves at convective boundaries
generate acoustic wave flux
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• At low Mach number, the Pressure does 
not affect the turbulent kinetic energy 
much

• BUT: it rotates the direction of the flow 
velocity vectors, and provides coupling of 
turbulence to wave motion at convective 
boundaries

The role of Pressure
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• large, anisotropic, energy bearing, 
advection, Lorenz model and strange 
attractor

• small, isotropic, Kolmogorov damping at 
end of cascade (3D)

Two velocity field 
approximation
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KE fluctuations in Oxygen 
burning in a shell

time

Radius

fluctuations g-waves
Meakin & Arnett, 2007, ApJ
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Fluctuations in KE

Turbulence is NOT quasi-static, but has large 
fluctuations in kinetic energy

Simple dynamic systems are known to have
chaotic behavior (Lorenz 1963), and resemble

3D simulations of turbulent fluid

(Arnett & Meakin, 2011, ApJ)

19



– 1 –

g

z

T0

T0 − T3 T0 + T3

φ

1

2
"

T0 − T1

T0 − T2

T0 + T1

T0 + T2

q

Fig. 3.— The Lorenz Model of Convection: Convection in a Loop.

Lorenz model
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Fig. 4.— The Lorenz Model extended: Convection in a shell composed of cells. Notice the al-

ternation of the sign of rotation. This may be thought of as a cross sectional view of infinitely

long cylindrical rolls, or of a set of toroidal cells, with pairwise alternating vorticity. Each cell can

exhibit random fluctuations in time.
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dX/dτ = −σX + σY

dY/dτ = −XZ + rX − Y

dZ/dτ = XY − bZ,

X: dimensionless speed
Y: dimensionless temperature difference 

(horizontal)
Z: dimensionless temperature difference (vertical)

r:Rayleigh No./critical, sigma: Prandtl No.
Time in units of radiative cooling time

Lorenz equations:

22



The Lorenz equations are non-linear. 

Linear analysis of stars with convection 
will miss the nonlinear effects of 

turbulence.
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3D simulation

Lorenz model
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Schwarzschild model using Lorenz :
a fake Betelgeuse
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we can simply  modify MLT to 
get the correct velocity (from 
balance of buoyant driving and

Kolmogorov damping)
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v
2 = gHP βT (∇−∇e)α2

/8

mCZv3/�d =
�

CZ
g�u�ρ��4πr2dr

MLT velocity - entropy excess relation

Buoyancy-Damping balance has 
no free parameter alpha

Buoyant driving is proportional to 
convective enthalpy flux

�u�ρ�/ρ� ∝ �u�T �/T �
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