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Mixing Length Theory
versus improvements

® no error estimates (Kolmogorov 4/5 law:
we get 4/5 ~ 0.85 with boundaries)

® no KE or acoustic Fluxes in MLT

® no deceleration at boundaries (Richardson
criterion for mixing, buoyancy braking;
alpha overshoot function of velocity, Brunt)

® static (Lorenz strange attractor)




Step |: 3D simulations
of turbulent flow:
generate data!




3D simulations by computer

What do we do!?

Oxygen fusion in stars: faster thermal relaxation
ignore (for now) rotation and magnetic fields
sectors, not whole stars (convective cells)

Implicit Large Eddy Simulation (ILES)

Only a range of Reynolds numbers, but
turbulent




ILES

® monotonic methods of shock capture (like
PPM) give a sub-grid dissipation ~(dv)"3/dr

® this is consistent with the dissipation in the
Richardson-Kolmogorov turbulent cascade

® no further “sub-grid” physics is needed (or
desired)




Bethe (1942): shock dissipation is a function of
shock width and velocity difference

e~ Au’/Ar

Kolmogorov (1942): turbulent kinetic energy
dissipates as

e~ u;/l

in terms of mean turbulent velocity and the
linear size of the turbulent region
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Sulfur-32 [ma.ss fraction], 3D Wedge
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Nordlund & Stein: Solar Atmosphere

Multiple Pressure Scale Heights




Porter and Woodward: red giant
Coupled convection and pulsation




Step 2: detailed
quantitative analysis and
theory construction




Reynolds decomposition into average and
fluctuating parts

a=aqayg+a
(@) = ag
(a') =0

overline is time average
angle bracket is angle average (3D-->1D)
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Acoustic and Turbulent Kinetic Energy Fluxes

FP — P’u’
FK — pEKu’
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dot u” with Navier-Stokes equation:

Turbulent KE Equation (terms in |e43 ergs)

—V . - < Fg > 25.8

5.79 Di(pExk)

— V- <F,> -9.92
+ < P'V-u > 00152
t+ <rpg-u> 457.6
— £g. -467.7

Mach Number ~0.01
Interior Convection zones have low Mach number in general
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Subgrid dissipation versus Kolmogorov
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Surface waves at convective boundaries
generate acoustic wave flux
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The role of Pressure

® At low Mach number, the Pressure does
not affect the turbulent kinetic energy
much

® BUT: it rotates the direction of the flow
velocity vectors, and provides coupling of
turbulence to wave motion at convective
boundaries




Two velocity field
approximation

® |arge, anisotropic, energy bearing,
advection, Lorenz model and strange
attractor

® small, isotropic, Kolmogorov damping at
end of cascade (3D)




KE fluctuations in Oxygen

burning in a shell
Meakin & Arnett, 2007, Ap)
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Fluctuations in KE

Turbulence is NOT quasi-static, but has large
fluctuations in kinetic energy

Simple dynamic systems are known to have
chaotic behavior (Lorenz 1963), and resemble
3D simulations of turbulent fluid

(Arnett & Meakin, 201 1,Ap))




L orenz model




Up-draft
Down-draft
Up-draft

Fig. 4.— The Lorenz Model extended: Convection in a shell composed of cells. Notice the al-
ternation of the sign of rotation. This may be thought of as a cross sectional view of infinitely
long cylindrical rolls, or of a set of toroidal cells, with pairwise alternating vorticity. Each cell can
exhibit random fluctuations in time.
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Lorenz equations:

dX/dr =
dY /dr =
dZ /dT =

—0oX + oY

—XZ

rX —Y

XY —bZ

X:dimensionless speed
Y: dimensionless temperature difference

(horizontal)

Z: dimensionless temperature difference (vertical)
r:Rayleigh No./critical, sigma: Prandtl No.
Time in units of radiative cooling time




The Lorenz equations are non-linear.

Linear analysis of stars with convection
will miss the nonlinear effects of
turbulence.
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Flux
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Schwarzschild model using Lorenz :

a fake Betelgeuse
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Spectral power of Schwarzschild-Lorenz

Fluctuations
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we can simply modify MLT to

get the correct velocity (from

balance of buoyant driving and
Kolmogorov damping)




MLT velocity - entropy excess relation

v* = gHpBr(V — V) /8

Buoyancy-Damping balance has
no free parameter alpha

mCZfUB/éd:/ g(w pAmridr
CZ

Buoyant driving is proportional to
convective enthalpy flux

wp'/p) x (WT'/T)
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