

Population as context

Solar activity

- Magnetic regions on the Sun are bright in Mg II (UV) and Ca II (optical)
- Measure ratio of total emission in line cores to flux in the wings
- Use disk-integrated time series measurements to track magnetic cycles

Stellar activity cycles

- Sun-as-a-star data show 10% variation in the Mg II index through solar cycle
- Similar magnetic activity cycles can be observed in other solar-type stars
- Mean activity level and cycle period scale with Rossby number (P_{rot} / τ_c)

Frequency shifts

- Solar p-mode shifts first detected in 1990, depend on frequency and degree
- Even the lowest degree solar p-modes are shifted by the magnetic cycle
- Unique constraints on the mechanism could come from asteroseismology

Libbrecht & Woodard (1990)

Theoretical interpretation

- Magnetic perturbations modify the near-surface propagation speed
- Also leads to decreased convective velocity and change in temperature
- Distinct behavior for solar f-modes and p-modes confirms these sources

Scaling from the Sun

- Parameterize shifts with Δν ~ A₀ (R / M) Q_j(D_c) and fit the MDI p-mode data
- A_0 ~ activity level, while the depth of the source D_c ~ H_p ~ $L^{1/4}$ $R^{3/2}$ / M
- A₀ captures most of the variation if depth fixed at D_c = 0.3 Mm for the Sun

Cycle-induced frequency shifts

- Solar p-mode shifts show spread with degree and frequency dependence
- Normalizing shifts by our parametrization removes most of the dependencies
- Kepler will document similar shifts in hundreds of solar-type stars

HD 2151 (β Hydri)

- Reanalysis of archival IUE data, including more recent observations
- Asteroseismic data from 2000 (just past maximum) and 2005 (near minimum)
- Mean shift: 0.1 ± 0.4 μHz, individual n=18 frequency shift: 0.17 ± 0.62 μHz

Southern HK project

- Small telescopes at CTIO run by SMARTS partners: Yale, GSU, STScI, et al.
- Service observing 2-3x
 per month using RC Spec
 with R ~ 2500 at Ca HK
- Monitor bright southern asteroseismic targets for stellar activity variations

HD 17051 (1 Hor)

- Shortest measured stellar activity cycle in a solartype star: 1.6 years
- Sampling permits some indication of the rotation rate: ~3x solar (8.5 days)
- Asteroseismology in 2007 (near maximum), repeat at minimum in late 2013?

Metcalfe et al. (2010)

Short activity cycles

- Confirm ~2.5 year cycle in HD 76151 from Mount Wilson survey
- Cycle in HD 22049 (ε Eri)
 may be shorter than the
 ~5 year MWO result
- Irregular short period variations in HD 30495, as in Mount Wilson

CoRoT: HD 49933

Kepler: the NOT sample

- Two proposed scalings for frequency shifts as a function of spectral type
- HD 49933 shows larger than solar shifts, supports Dziembowski scaling
- Several dozen Kepler targets being monitored in Ca HK from NOT

Future prospects

- Satellite missions will extend the calibration of dynamo models to many unique sets of physical conditions and to different evolutionary phases.
- Must be coupled with long-term ground-based monitoring of stellar activity cycles from Ca HK surveys (Lowell, SMARTS, CASLEO).
- We will eventually move beyond scaling from solar data, and use the new observations as independent tests of dynamo models.