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caveat

* |n the spirit of this conference, want to discuss how to
use tides to constrain stellar interiors,

but ....

* There is uncertain wave physics, both at the linear and

nonlinear level, and this depends in detail on what
type of star.

* Focus here: tidal excitation and damping of waves,

and dependence on gross properties of stellar
structure.



Tidal evolution effects

Circularization of orbits:
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Origin of Secular Tidal Evolution

tidal potential —wt
due to companion: U ~ € €

e = strength of tide

density perturbation

. lag time = 5/@
0—wt &
response to tide: 5,0 ~ € 62( w )

due to dissipation

external potential
from this density 2(5 _wt)
perturbation acts 6¢ ~ € €
back on companion:
7)
out-of-phase 'A
force on companion DA Q
leading to secular f ~ € Slﬂ(é) ,
evolution: Q

nearer bump wins




tidal Q

By analogy with the B —F)dt

“quality” of a damped 1 — fﬁ( ) — tan(25)
. y PEa, 2Trl?tide

driven oscillator:

Q is related to the

lag angle §
of the tidal bulge

>/

standard operating procedure:
* Q = constant
* independent of frequency and amplitude
e calibrated from one observation and
(G. Darwin)  gpplied to another




data

* Circularization of binaries with two solar-type
stars.

* Orbital decay of planets.
e Alignment of stellar spin to planet orbit.



Circularization of solar-type binaries
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(data from Meibom and Mathieu 2005)

Calibration of Q using

the observed circularization
of binaries with two solar-
type stars:

5 6
Qsolar—type star ~ 10° — 10

Forcing periods: ~ 10-15 days
(planets: 1-7 days)

But this observed Q is not
well explained by theory!

Theory underpredicts
tidal dissipation rate.

(Goodman and Dickson, Terquem et al,
Savonije and Witte, Ogilvie and Lin)
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HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES The time dependence of hot Jupiters’ orbital inclinations’

A.H.M.J. Triaud

Josuua N. WinN!, DANIEL FaBrYCKY?*, SIMON ALBRECHT', AND JOHN ASHER JOHNSON?

180_ L] I I +l L] L] _
—_ TTT T[T T T T[T T T[T T T T[T T T T[T T T T TTT1
o 150 . — L % : i
@ :
= WASP -8 ™ S ) & -
S 120 o e T :
g 9oF .
)
‘i 60 Hoaosos* B
o
& 30F ‘ - -
o—- b I.. 3 b lil e i a.+l B § I TR TR SN RN N T 1 -_
5 0.04 - -
= 0.03} -
~ 0.02 -
= 001 .
0.00 . . e, S , .
4500 5000 5500 6000 6500 7000 7500 8000

Stellor effective temperoture [K] 0 ) > 3 4 5 6 7

Age (Gyr)

Figure 2. Misaligned systems have hotter stars. Top: the projected obliquity is
plotted against the effective temperature of the host star. A transition from mainly
aligned to mainly misaligned seems to occur at Toir & 6250 K. The two strongest
exceptions are labeled. Symbol colors and shapes have the same meaning as in
Figure 1. Bottom: the mass of the convective zone of a main-sequence star as
a function of Teg, from Pinsonneault et al. (2001). It is suggestive that 6250 K
is approximately the temperature at which the mass of the convective zone has
bottomed out.

Fig.2. Secure |8| against stellar age (in Gyr), for stars with M, >
1.2 M. Size of the symbols scales with planet mass. Blue squares in-
dicate stars with M, > 1.3 M,; red diamonds, stars with 1.3 > M, >
1.2 M, Horizontal dotted line show where aligned systems are. Vertical
dotted line shows the age at which misaligned planets start to disappear.

(see theory papers Dong Lai, Barker and Ogilvie)



(e.g. Jackson et al

Orbital decay of exoplanets? 2009)

e Sun-like stars rotate slow compared to planet orbit (2, < Q.1 ).
e Tide raised in star by planet spins star up.
e Orbit must decay inward to conserve total angular momentum.

e Insufficient J in orbit to synchronize star inside P, =1 week.

1/2
a _ o(c\Y?(RrRM, 4—13/2 L Q (&)2 ImQy—p—»
a B 2 M* / Orb a M*R2

*

Example: WASP 18-b has M, = 10M,,, and a = 0.02 AU . For (2/* — 10°
—3
tdecay == 1 Myr ~ 107" age

If true, orbit decay is ongoing, even for Gyr old planets.

we happen to be able to see planets “just before they fall in”.
Possible explanations:

(a) We’re lucky. (b) Feed from outside. (c) Q wrong.



Orbital decay of
a population of planets

(In preparation.With Uva undergrads Meredith Nelson and Sarah Peacock)

Constrain tidal dissipation from the distribution of
semi-major axes of planets (e.g. Jackson et al 2009)

%? | (98a (CLTZ) =0

When decay time << age, flux constant
and observed distribution should
reflect the orbital decay law:

constant
n(a,t) = <
a(a)
If decay times really short,
you should be able to measure the

frequency dependence of the tidal
Q from the observed distribution.

n(a)[AU-1]
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linear theory



Tidal excitation: linear, adiabatic

Companion orbits at position (’I“, 0, qﬁ) = (D, 7T/2, (I)) in spin-orbit aligned case.

Coriolis

) —_—— bu/oza\ncy
Momentum: p€ +20Q2 x&=— Vop + gop — pVU
N~~~ N—— N——
inertia pressure tidal forcing
Mass: op+ V- (pf) =0
op N?
Energy: op=—5 +p—5&
¢ 9

Boundary conditions: regular at r=0, Ap — () at surface.

Tidal potential:
GM'

U(x,t) “lz—D

— (dipole term)

47t
= —OM' >, g1t Yom(®/2 ®)Yen(0,9)
£>2,m



General features of solution

Equations inhomogeneous => “wave” + “non-wave” parts,

also called “equilibrium” and “dynamical” tides.

Non-wave part often approximated with the analytic
“equilibrium tide” found by setting fluid inertia to zero =>
instantaneous response, follow equipotentials:

U
Ep > —— and A\VAR £ ~ ()
9
Wave (“dynamical”) part composed of standing p, g, f &
inertial modes with Lorentzian amplitudes when no

dissipation, leaky boundaries, nonlinear effects.



Linear theory: stellar input data

10 - solar model &
G-modes can be resonant =2 >

with the tide, but have small
overlaps and weak damping.

f-modes: large overlap,
weak damping, not
resonant

p-modes: small overlap,
large damping, not
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Linear theory for tidal Q: non-rotating

Solar model.
Radiative diffusion + turbulent viscosity.
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Inertial waves in solar-type star: 2d code results
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Plotted: response
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\g-modes:

small shear in
convection zone.

inertial waves:
large shear

in convection
zone =>
turbulent viscosity
damping.
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2 main linear damping mechanisms

e Radiative diffusion for g-modes in the core

4
POI‘b (Goodman
Vtgroup ~ 12 days & Dickson)

* Turbulent viscosity for inertial waves in
convective envelope

3 . (un-reduced
,.yt ~ ( n | , L ) PSplIl viscosity vH/3)
rou — _
5 P 10 1 day (12|, | denotes

nodes in cz)

Need far fewer nodes in surface cz to get strong damping.



some nonlinear effects



why do nonlinear fluid effects matter?

size of the “equilibrium” tide for a Jupiter-like planet M
around a Sun-like star:

Over most of the star, the wave amplitude is
small, and the linear approximation to fluid
dynamics is good. But...

there can be small regions in stars where wave
amplitudes become large, and nonlinear
fluid processes become important.

(solar literature: Press, Dziembowski, etc)




logm |€r|’ loglo |Eh|

Steepening of g-modes
near the center of solar-type stars

(Press, Dziembowski, Ogilvie Barker Lin, Weinberg et al)
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Wave breaking at the center
of stars with radiative cores

(Zahn, Press, Goodman and Dickson, Ogilvie Lin Barker)

Inward-going gravity wave launched from
rcb. If central amplitude high enough, wave

can overturn the stratification and not reflect.

Wave luminosity: L. ~ (pr?A)_, v2 Qo

A Qorb 2/3
H, (Lamb)
At the center, measure of nonlinearity is
1/6
g_fl“ ~ M/ Porb /
)\r o MJup 1 day

So waves break near the center of the
star outside a critical orbital separation.

Prediction: planets decay and then park. (Observed?)
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wave
“breaking” boundary

(Barker 2011)
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consequences of wave breaking

Large dissipation rate (small Q).

8/3 Dependence of wave lum on star:

Porb
1 day
Important for planet orbital decay,

but too small by ~1000 to explain
circularization of solar-type binaries.

Qcpos ~ 10°
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What if waves don’t break?

The parametric instability

| There is
g another




coupling the fluid to the orbit

Time evolution of standing f, p, g modes:
Aq + wa Ao = —%onz + Ua(t) + Z[S Uap(t)Ap + 257 Kapy Ay

dampin : :
pINg I|.near n'onllnear 3-wave
hd.e. t|d.e. coupling
driving driving
orbit forcing waves internal

redistribution

. . . waves force orbit
Time evolution of the orbit:

D — D®% =ap ~ O(A) + O(4?)
4 (D) = Dag ~ O(4) + O(4?)



stability of the linear tide?
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The linearly driven tide acts as a
time-dependent background on
which other waves propagate.
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If this time-dependent background
resonates with two daughter waves,
then above a threshold amplitude
they can undergo the parametric L
instability” and grow exponentially, ! © 2 * >
eventually reaching a nonlinear og1o Time (orbits)
equilibrium.
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the linear tide is unstable,
even for low mass companions

Unstable

0.01 |
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amplitudes just above threshold

Analytic model for nonlinear
equilibrium amplitudes

of N>>1 parents and 1
daughter pair.

parent mode amplitude log,, q,
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orbital evolution rate
just above threshold

Even for just one =10 days, IFmok=R =0
daughter pair, orbital | '
evolution can be
increased by a factor of
10 or more.
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there can be thousands

orbital evolution rate
quadrupole Im(Q,,,)/MR?
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Simulation of
many coupled
g-modes in
solar-type star.

Initial conditions:
linear tide

Porb=2 days.

parent = 1 day (m=2)
Parametric instability
causes unstable
daughters at

2 day periods.

All modes coupled.

Damping X 1000
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Time (days) = 0,00000

“g-mode turbulent
cascade”
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Summary

* Tidal evolution observed for binaries containing solar-type
stars.

* “Dynamical tide” excitation/damping of inertial-gravity waves
important. Inertial waves in convection zones a promising
avenue toward larger larger dissipation rates needed to explain
observations.

* Two important nonlinear effects: wave breaking
+ parametric instability.



A simple model for nonlinear tidal dissipation:
Press, Wiita & Smarr (1975)

* Re >> 1 + instability gives turbulence.

* For forcing frequency o, saturation Uy ~~ coR
with velocity and length scales /
~ R

*Turbulent viscosity Viurb ~~ g?)g ~ 60’R2

*Yields an amplitude dependent tidal Q

—1 —1 Vturb
Q ~ O £2 ~ € Possible improvements:
Better tidal flow

waves not eddies
realistic dissipation
Q_l Identify instability



