Oscillations in red giants Tim Bedding (SIfA, Univ. Sydney) ## Question: When was the first detection of oscillations in a red giant? Answer: 1596 # WANTED DEAD OR ALIVE Big red version of this: REWARD \$ 1,000,000 #### EVIDENCE FOR PERIODIC RADIAL VELOCITY VARIATIONS IN ARCTURUS #### P. H. SMITH, R. S. McMILLAN, AND W. J. MERLINE Lunar and Planetary Laboratory, University of Arizona Received 1986 July 1; accepted 1987 April 13 #### **ABSTRACT** We report evidence for periodic radial velocity variations in Arcturus; the most likely period and amplitude for these variations are 1.842 ± 0.005 days and 160 ± 10 m s⁻¹, respectively. Observations of Pollux taken on many of the same nights show no significant power on time scales between 2 days and 2 months; the nightly #### K GIANTS IN 47 TUCANAE: DETECTION OF A NEW CLASS OF VARIABLE STARS1 PETER D. EDMONDS AND RONALD L. GILLILAND Space Telescope Science Institute,² 3700 San Martin Drive, Baltimore, MD, 21218 Received 1996 March 7; accepted 1996 April 3 #### ABSTRACT We report the discovery of variability among K giants in the globular cluster 47 Tucanae, using a time series of U exposures with the Hubble Space Telescope. The variables lie along a narrow band in the color-magnitude diagram, joining the faint end of the asymptotic giant branch to the red giant branch. The variations, if coherent, mostly have periods between ~ 2 and ~ 4 days, consistent with low-overtone radial pulsation or nonradial pulsation, and V amplitudes in the range 5–15 mmag, which explains their nondetection so far in clusters. One of the variables may have a period of 1.1 days and a V amplitude of 5.3 mmag. These stars define a new class of variable stars and probably contain variable field K giants such as α Boo as members. An understanding of their variations may have significant ramifications for theories of stellar structure and stellar evolution. #### Detection of Solar-like oscillations in the G7 giant star ξ Hya S. Frandsen¹, F. Carrier², C. Aerts³, D. Stello¹, T. Maas³, M. Burnet², H. Bruntt¹, T. C. Teixeira^{4,1}, J. R. de Medeiros⁵, F. Bouchy², H. Kjeldsen^{1,6}, F. Pijpers^{1,6}, and J. Christensen-Dalsgaard^{1,6} CORALIE at the Swiss 1.2-m Leonhard Euler Telescope at La Silla, Chile ### Why is it so messy? Mode lifetimes (τ =2 to 4 days in the Sun) Lorenztian envelope: $FWHM = 1 \text{ to } 2\mu Hz$ ## Oscillation mode lifetimes in ξ Hydrae: will strong mode damping limit asteroseismology of red giant stars?* D. Stello^{1,2,3}, H. Kjeldsen¹, T. R. Bedding², and D. Buzasi³ $\tau \sim 2\text{--}3$ days; Stello et al. 2004 $\tau \sim 15-20 \,\mathrm{days}$; Houdek & Gough 2002 #### Wide Field Infrared Explorer (WIRE) - launched on 5 March 1999 - primary mission failed - asteroseismology using the 5cm star camera (Derek Buzasi) #### WIRE observations of K giants α UMa (Buzasi et al. 2003) ## STILL # WANTED DEAD OR ALIVE Big red version of this: REWARD \$ 1,000,000 #### Discovery of solar-like oscillations in the red giant ε Ophiuchi* **CORALIE** and **ELODIE** ## Detection of solar-like oscillations in the red giant star ϵ Ophiuchi by MOST spacebased photometry* C. Barban^{1,2}, J. M. Matthews³, J. De Ridder², F. Baudin⁴, R. Kuschnig³, A. Mazumdar^{5,2}, R. Samadi¹, D. B. Guenther⁶, A. F. J. Moffat⁷, S. M. Rucinski⁸, D. Sasselov⁹, G. A. H. Walker³, and W. W. Weiss¹¹ frequency (μHz) ## CoRoT (27 cm) Launched: 27 December 2006 figure by Daniel Huber figure by Daniel Huber ### The birth of ensemble asteroseismology ## Characteristics of solar-like oscillations in red giants observed in the CoRoT exoplanet field*,** S. Hekker^{1,2,3}, T. Kallinger^{4,8}, F. Baudin⁵, J. De Ridder², C. Barban⁶, F. Carrier², A. P. Hatzes⁷, W. W. Weiss⁴, and A. Baglin⁶ ## Oscillating red giants in the CoRoT exofield: asteroseismic mass and radius determination* T. Kallinger^{1,2}, W. W. Weiss¹, C. Barban³, F. Baudin³, C. Cameron⁴, F. Carrier⁵, J. De Ridder⁵, M.-J. Goupil³, M. Gruberbauer^{4,1}, A. Hatzes⁶, S. Hekker^{7,8,5}, R. Samadi³, and M. Deleuil⁹ #### Probing populations of red giants in the galactic disk with CoRoT* A. Miglio^{1,**}, J. Montalbán¹, F. Baudin², P. Eggenberger^{1,3}, A. Noels¹, S. Hekker^{4,5,6}, J. De Ridder⁵, W. Weiss⁷, and A. Baglin⁸ #### Red-giant seismic properties analyzed with CoRoT* B. Mosser¹, K. Belkacem^{2,1}, M.-J. Goupil¹, A. Miglio^{2,**}, T. Morel², C. Barban¹, F. Baudin³, S. Hekker^{4,5}, R. Samadi¹, J. De Ridder⁵, W. Weiss⁶, M. Auvergne¹, and A. Baglin¹ ## Kepler 95cm Schmidt telescope; Launched: 6 March 2009. Observations commenced: 1 May 2009 ### Red giants with Kepler (first 30 days) Frequency (µHz) Bedding et al. 2010 ### Kepler Huber et al. (2011) # Scientific results: What can we do with all these stars? ### Modelling individual stars ## Non-radial oscillations in the red giant HR 7349 measured by CoRoT* F. Carrier¹, J. De Ridder¹, F. Baudin², C. Barban³, A. P. Hatzes⁴, S. Hekker^{5,6,1}, T. Kallinger^{7,8}, A. Miglio⁹, J. Montalbán⁹, T. Morel⁹, W. W. Weiss⁷, M. Auvergne³, A. Baglin³, C. Catala³, E. Michel³, and R. Samadi³ #### Evidence for a sharp structure variation inside a red-giant star A. Miglio^{1,*}, J. Montalbán¹, F. Carrier², J. De Ridder², B. Mosser³, P. Eggenberger⁴, R. Scuflaire¹, P. Ventura⁵, F. D'Antona⁵, A. Noels¹, and A. Baglin³ ## Modelling *Kepler* observations of solar-like oscillations in the red-giant star HD 186355 C. Jiang,¹ B. W. Jiang,¹ J. Christensen-Dalsgaard,² T. R. Bedding,³ D. Stello,³ D. Huber,³ S. Frandsen,² H. Kjeldsen,² C. Karoff,² B. Mosser,⁴ P. Demarque,⁵ M. N. Fanelli,⁶ K. Kinemuchi,⁶ F. Mullally⁷ ## Solar-like oscillations from the depths of the red-giant star KIC 4351319 observed with *Kepler* M. P. Di Mauro, ^{1*} D. Cardini, ¹ G. Catanzaro, ² R. Ventura, ² C. Barban, ³ T. R. Bedding, ⁴ J. Christensen-Dalsgaard, ⁵ J. De Ridder, ⁶ S. Hekker, ^{7,8} D. Huber, ⁴ T. Kallinger, ^{9,10} A. Miglio, ^{7,11} J. Montalban, ¹¹ B. Mosser, ³ D. Stello, ⁴ K. Uytterhoeven, ^{12,13} K. Kinemuchi, ¹⁴ H. Kjeldsen, ⁵ F. Mullally ¹⁵ and M. Still ¹⁴ ## **Ensemble asteroseismology:** $\Delta \nu$ versus ν_{max} **Table 1.** Published measurements of $\Delta \nu$ and ν_{max} . | Star | Δν
(μ H z) | ν _{max}
(μHz) | Source | | |-------------------|----------------------|---------------------------|-------------------------------|--------| | | (μπ. | | | | | τ Cet | 170 | 4500 | Teixeira et al. (2009) | | | α Cen B | 161.4 | 4100 | Kjeldsen et al. (2008) | | | Sun | 134.8 | 3100 | Kjeldsen et al. (2008) | | | ι Hor | 120 | 2700 | Vauclair et al. (2008) | _ | | γ Pav | 120.3 | 2600 | Mosser et al. (2008) | N | | α Cen A | 106.2 | 2400 | Kjeldsen et al. (2008) | H) | | HD 175726 | 97 | 2000 | Mosser et al. (2009) | 3 | | μ Ara | 90 | 2000 | Bouchy et al. (2005) | | | HD 181906 | 87.5 | 1900 | Garcia et al. (2009) | \leq | | HD 49933 | 85.9 | 1760 | Appourchaux et al. (2008) | | | HD 181420 | 75 | 1500 | Barban et al. (2009) | | | βVir | 72 | 1400 | Carrier et al. (2005b) | | | μ Her | 56.5 | 1200 | Bonanno et al. (2008) | | | βHyi | 57.5 | 1000 | Kjeldsen et al. (2008) | | | Procyon | 55 | 1000 | Arentoft et al. (2008) | | | ηΒοο | 39.9 | 750 | Carrier, Eggenberger & Bouchy | | | v Ind | 25.1 | 320 | Kjeldsen et al. (2008) | | | η Ser | 7.7 | 130 | Barban et al. (2004) | | | ξ Hya | 6.8 | 90 | Frandsen et al. (2002) | | | β Vol | 4.9 | 51 | Unpublished WIRE data | | | ϵ Oph | 5.3 | 50 | Barban et al. (2007) | | | ξ Dra | 4.0 | 36 | Unpublished WIRE data | | | κ Oph | 4.5 | 35 | Unpublished WIRE data | | | HR3280 | 3.2 | 25 | Unpublished WIRE data | | | 31 $CoRoT$ giants | 2-7 | 15-73 | Kallinger et al. (2009) | | Stello et al. (2009) ## Red giants with CoRoT ## Kepler Huber et al. (2011) ## Scaling relations: $$\Delta u \propto \left(\frac{M}{R^3}\right)^{1/2}$$ $u_{ m max} \propto u_{ m ac} \propto \frac{M}{R^2 \sqrt{T_{ m eff}}}$ Huber et al. (2011) ## Scaling relations: $$\Delta \nu \propto \left(\frac{M}{R^3}\right)^{1/2} \qquad \qquad \nu_{\rm max} \propto \nu_{\rm ac} \propto \frac{M}{R^2 \sqrt{T_{\rm eff}}}$$ ## Solve to get mass and radius: $$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$$ $$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}$$ (and luminosity) Kallinger et al. (2010) - Kepler # So we can get M, R and L for all stars What else can we do? Basu et al. (2011) ## Open clusters #### mass loss # Amplitudes ### Amplitudes: Kjeldsen & Bedding (1995): $$A_{\lambda} \propto L/(MT_{\rm eff}^2)$$ Stello et al. (2011) – Kepler open clusters $$A_{\lambda} \propto L^{0.90}/(M^{1.7}T_{\rm eff}^2)$$ ## Open clusters ### amplitudes Stello et al. (2011) ## What else can we do? # A closer look at the frequency spectra... Red giants with Kepler & CoRoT Christensen-Dalsgaard (1988,1993) #### Kepler red giant (1 month) Bedding et al. (2010) same red giant (10 months) #### same red giant (19 months) Barban et al. (2007) # Mixed modes arise from coupling between p and g modes with the same *l* Dupret et al. (2009) see also Christensen-Dalsgaard (2004) #### Kepler Detected Gravity-Mode Period Spacings in a Red Giant Star P. G. Beck,1* T. R. Bedding,2 B. Mosser,3 R. A. Garcia,4 T. Kallinger,5 S. Hekker,6, Y. Elsworth,6 S. Frandsen,7 D. Stello,2 F. Carrier,1 J. De Ridder,1 C. Aerts,1,8 T. R. White,2 D. Huber,2 M.-A. Dupret,9 J. Montalbán,9 A. Miglio,9 A. Noels,9 W. J. Chaplin,6 H. Kjeldsen,7 J. Christensen-Dalsgaard,7 R. L. Gilliland,10 T. M. Brown,11 S. D. #### LETTER # Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars Timothy R. Bedding¹, Benoit Mosser², Daniel Huber¹, Josefina Montalbán³, Paul Beck⁴, Jørgen Christensen-Dalsgaard⁵, Yvonne P. Elsworth⁶, Rafael A. García⁷, Andrea Miglio^{3,6}, Dennis Stello¹, Timothy R. White¹, Joris De Ridder⁴, Saskia Hekker^{6,8}, Conny Aerts^{4,9}, Caroline Barban², Kevin Belkacem¹⁰, Anne-Marie Broomhall⁶, Timothy M. Brown¹¹, Derek L. Buzasi¹², Fabien Carrier⁴, William J. Chaplin⁶, Maria Pia Di Mauro¹³, Marc-Antoine Dupret³, Søren Frandsen⁵, Ronald L. Gilliland¹⁴, Marie-Jo Goupil², Jon M. Jenkins¹⁵, Thomas Kallinger¹⁶, Steven Kawaler¹⁷, Hans Kjeldsen⁵, Savita Mathur¹⁸, Arlette Noels³, Victor Silva Aguirre¹⁹ & Paolo Ventura²⁰ Bedding et al. (2011); see also Mosser et al. (2011) for CoRoT results T. White et al. (submitted to ApJ) ## LETTER # Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes Paul G. Beck¹, Josefina Montalban², Thomas Kallinger^{1,3}, Joris De Ridder¹, Conny Aerts^{1,4}, Rafael A. García⁵, Saskia Hekker^{6,7}, Marc-Antoine Dupret², Benoit Mosser⁸, Patrick Eggenberger⁹, Dennis Stello¹⁰, Yvonne Elsworth⁷, Søren Frandsen¹¹, Fabien Carrier¹, Michael Hillen¹, Michael Gruberbauer¹², Jørgen Christensen-Dalsgaard¹¹, Andrea Miglio⁷, Marica Valentini², Timothy R. Bedding¹⁰, Hans Kjeldsen¹¹, Forrest R. Girouard¹³, Jennifer R. Hall¹³ & Khadeejah A. Ibrahim¹³ # in press (under embargo!) # Thank you