Convection in Main-Sequence

 Stars (Part I)
w/ Browning, Brun, Miesch, Toomre, Zweibel

Ben Brown

(CMSO \& NSF AAPF) Univ.Wisconsin Madison

Magnetic Activity in Solar-like Stars

 (Convective

 (Convective

 Envelope)

 Envelope)

 F-M: all magnetically active

Anelastic Spherical Harmonic (ASH) Simulations

- Capture 3-D MHD convection at high resolution on massively-
 parallel supercomputers (~1000 processors for ~ 1 year)
- Study turbulent convection interacting with rotation in bulk of solar CZ: $0.72 R-0.97 R$
- Realistic stellar structure
- Simplified physics: perfect gas, radiative diffusivity, compressible, subgrid transport, MHD
- Correct global spherical geometry

Solar convection (Miesch et al. 2008)

Radial Velocities in

 a solar simulationDownflows: fast, narrow Upflows: slow, broad

Swirling, vortical convection near polar region

Sweeping cells near equator

Shown near the solar surface (2\%)

(based on Miesch et al. 2008)

Rapidly Rotating Suns: Convective Flows

-80 $+80 \mathrm{~m} / \mathrm{s}$

 (Period ~ 9d)

 (Period ~ 9d)}

O days
(Brown et al. 2008, 20I0)

Flows in a very rapidly rotating star

(Period ~ 3d) 2 days
(Brown et al. 2008)

Tuesday, October 25, 2011

Convection in G-type stars

Convective fluxes (G-type)

Differential Rotation in Other Suns (G-type)

More rapidly rotating suns look much like the Sun, but with stronger overall DR contrast

Decent agreement with observations

Flows in F- and M-type stars

F-type (1.2 M ${ }_{\circ}$)

M-type $\left(0.35 \mathrm{M}_{\odot}\right)$
$-14 / 14$
(Browning)

How is this Differential Rotation Maintained?

Reynolds Stresses (cylindrical transport)

Meridional Circulations

Disagreement with expectations

Slowly Spinning Suns: anti-solar DR

(Period ~ 56d)
0 days

Ro~2

Rapid Rotators

Observables

Slow
Spinners

Hot poles
Ro Cold poles
BB flux map with
5-10\%
variation

Convection Zone Dynamos: Magnetic Wreaths

Hemisphere view
(Brown et al. 2011)
Equatorial view
$5 \Omega_{0}$

Convection Zone Dynamos: Magnetic Wreaths and Global-scale Reversals

Shortly before
(Brown et al. 2011)
Long after
$5 \Omega_{0}$

Next Step: Sunspots and Buoyant Magnetic Loops?

(Nelson et al. 2011, ApJL)

Stellar Dynamos: Many flavors

Rotation and Turbulence

3Ω
11 yrs ~ 4000 days
lower- η
Cyclic

Rotation and Turbulence

Stellar Dynamos: Many flavors

