The physics of red-giant oscillations

Marc-Antoine Dupret

University of Liège, Belgium

The impact of asteroseismology across stellar astrophysics Santa Barbara, 24-28 oct 2011

Plan of the presentation

- Dynamical aspects (adiabatic analysis)
 - Acoustic structure of red giants and mode trapping
 - Seismic diagnostics from p-like modes
 - Seismic diagnostics from g-like modes
- Energetic aspects (non-adiabatic analysis)
 - Stochastic excitation
 - Convective and radiative damping
 - Predictions for different models

How red giants differ from the Sun from an acoustic point of view?

How red giants differ from the Sun?

Regular frequency pattern ~ Asymptotic

Large core-envelope density contrast in red giants

Large core-envelope density contrast in red giants

Dipolar modes physics (Takata, 2005, 2006)

First integral (center of mass motion)

Rigorous 2nd order oscillation equations:

$$\frac{d\mathcal{Y}_{1}}{dr} = F_{1}(r;\sigma^{2})\mathcal{Y}_{2} \qquad F_{1}(r;\sigma^{2}) = \frac{r^{2}u^{2}}{c^{2}} \left[\frac{L_{1}^{2}}{\sigma^{2}} \left(1 - \frac{\rho}{\rho_{av}} \right)^{2} - 1 \right] \qquad \rho_{av} = \frac{3M_{r}}{4\pi r^{3}}$$

$$\frac{d\mathcal{Y}_{2}}{dr} = F_{2}(r;\sigma^{2})\mathcal{Y}_{1} \qquad F_{2}(r;\sigma^{2}) = \frac{1}{r^{2}u^{2}} \left[\sigma^{2} - N^{2} \left(1 - \frac{\rho}{\rho_{av}} \right)^{-2} \right]$$

New critical frequencies:

$$\tilde{L}_1^2 = L_1^2 \left(1 - \frac{\rho}{\rho_{\text{av}}} \right)^2$$

$$\tilde{N}^2 = N^2 \left(1 - \frac{\rho}{\rho_{\text{av}}} \right)^{-2}$$

This should affect the size and location of the cavities

Eigenfunctions similar to classical p-modes in the envelope

Huge number of nodes in the core

$$n_g \propto (\ell(\ell+1))^{1/2} \int \frac{N}{r} dr.$$

Mode trapping

See also Dziembowski et al. (2001) Christensen-Dalsgaard (2004)

Mode trapping

See also Dziembowski et al. (2001) Christensen-Dalsgaard (2004)

Seismic diagnostics from modes trapped in the envelope

Same diagnostics as in main sequence solar-like stars

1) Large separation

In the asym-

Homologous reasoning:

In the asymptotic limit:
$$<\Delta
u> \simeq \left(\int_0^R dr/c\right)^{-1}$$
 Homologous $\propto (M/R^3)^{1/2}$ reasoning:

Mean density

But: surface effects (non-adiabaticity, ...)

But : red giants are not homologous ...

Seismic diagnostics from modes trapped in the envelope

2) Acoustic glitches

Sharp features in sound speed

Deviations from constant Δv as oscillatory components

$$\delta \nu = A(\nu) \cos (4\pi \tau_0 \nu + \phi)$$
$$\tau_0 = \int_{r_0}^R \frac{dr}{c}$$

See e.g. Gough (1990)

- In red giants: Signature of HeII ionization zone
 - → access to envelope He abundance
- Miglio et al. (2010) No signatures of the base of convective envelope because too large acoustic depth

Seismic diagnostics from modes trapped in the envelope

3) Small separation

 δv_{02} - Δv_0 degeneracy

δv_{02} depends mainly on mass and radius

Seismic diagnostics from modes trapped in the core

Period spacing:
$$\Delta P = P_{k,\ell} - P_{k-1,\ell} \approx \frac{2\pi^2}{\sqrt{\ell(\ell+1)}} \left(\int_{g_{cavity}} \frac{N}{r} \, \mathrm{d}r \right)^{-1}$$

Huge potential to probe the deepest layers:

- Determination of the evolutionary stage
- Measure of the He core mass (Montalban et al. 2012)
- Signatures of the μ -gradient in the core ?

Seismic diagnostics from modes trapped in the core

Period spacing:
$$\Delta P = P_{k,\ell} - P_{k-1,\ell} \approx \frac{2\pi^2}{\sqrt{\ell(\ell+1)}} \left(\int_{g_{cavity}} \frac{N}{r} \, \mathrm{d}r \right)^{-1}$$

Observed modes

For a precise seismic modelling, we have to deal with these strong non-linearities ...

Stochastic excitation (top of the convective envelope)

Samadi et al. (2003, ...) Belkacem et al. (2006, ...) Houdek et al.

Amplitude (velocity)

$$V^2(R) =$$

Stochastic

Stochastic

Outermost part of the convective envelope

Two types of terms : Reynolds stress Entropy

Main uncertainties: Injection length scale, kinetic energy spectrum

Damping of the modes $\eta = \tau^{-1} = -W/(2\sigma I)$

$$\eta = \tau^{-1} = -W/(2\sigma I)$$

Convective damping in the envelope

See e.g. Gabriel (1996), Grigahcène et al. (2005), Gough (1977), Balmforth et al. (1992), Houdek et al.

Coherent interaction convection-oscillations

Very complex because : Convective time-scale

- ~ thermal time-scale
- ~ oscillation periods
- Large uncertainties but ... only depend on mode physics in the outermost part of the convective envelope
- Not affected by mode trapping

How to improve?: use of 3D simulations, fitting of mode life times

Radiative damping in the core

In a cavity with short wavelength oscillations:

Large variations of the temperature gradient

Large radiative damping

Affected by mode trapping

Significant for models with huge N^2 in the core huge core-envelope density contrast

Mode profiles in the power spectrum

If the modes are resolved:

 $life - time << T_{obs}$

Height in the power spectrum

$$H = \frac{p}{2\eta^2 I^2}$$

If $\eta \propto I^{-1}$: $H \propto p$

Mode profile

Similar heights for radial and resolved non-radial modes

If the modes

$$T_{obs} << life - time$$

If the modes are not resolved:
$$H=\frac{T_{obs}\,p}{4\,\eta\,I^2}$$
 If $\eta\propto {\bf I}^{\text{-1}}$: $H\propto T_{obs}/ au$

Smaller heights for very long lifetime unresolved modes!

Predicted power spectrum

Regular for I=0 and 2

« Fine structures » of I=1 mixed modes

An Helium burning model

An Helium burning model

Predicted power spectrum

Regular for I = 0 and 2

« Fine structures » of I=1 mixed modes

Predicted power spectrum

Complex spectrum for I=1 modes!

Predicted power spectrum

Regular spectrum similar to main sequence stars

Thank you!

