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97% of all stars will become white dwarfs 

(Christensen-Dalsgaard) 



White Dwarfs are very faint 

Sirius A 

Sirius B 



Carbon and 
Oxygen 

core 

Thin helium layer 

Thinner hydrogen layer 

White Dwarfs are Simple 

99% Carbon/Oxygen 

1% Helium 

0.01% Hydrogen 
DA= hydrogen atmosphere 
DB= helium atmosphere 



The Physics of White Dwarfs 

•  White dwarfs are supported by electron degeneracy 
pressure (the Pauli Exclusion Principle) 

•  Cooling is controlled by the heat capacity of the ions, 
and the surface temperature 

•  When hot ( > 25,000 K) they emit more energy in 
neutrinos than in photons 

•  As they get very cool (about 7000 K), the ions in the 
core settle into a crystalline lattice, i.e., they 
“freeze” or crystallize 

•  Gravity is high (g » 108 cm/s2), so heavy elements 
sink, producing nearly pure H and He layers 



Science with White Dwarfs 
•  Pulsating white dwarfs allow us to:   

–  Constrain their core chemical profiles 
–  Constrain the physics of crystallization  
–  Probe the physics of convection  
–  Constrain accretion in CV systems 
–  Test the properties of exotic particles such as 

plasmon neutrinos and axions 
–  Look for extra-solar planets  
–  Probe “exotic” stellar systems 



In the last 8 years 
the number of known 
pulsators has gone 
from ~35 to ~160 

(e.g., Mukadam et al. 2004, 
ApJ, 607, 982; Gianninas, 
Bergeron, & Fontaine 2006, 
AJ, 132, 831; Castanheira et 
al. 2006, A&A, 450, 227; 
Mullally et al. 2005, ApJ, 
625, 966; Nitta et al. 2009, 
ApJ,  690, 560) 

The SDSS 

It’s good to be faint 
and blue! 

S. O. Kepler 



White Dwarf Pulsations 

•  non-radial g-modes,     
 periods ~ 100 to 1000 s 



DBV and DAV driving 
Due to convective driving -- the “Brickhill effect” 
       (Brickhill 1992, Wu & Goldreich) 
•  convection zone is associated with the partial 
ionization of either H or He 
•  predictions of instability are similar to those of 
· mechanism driving in white dwarfs:  

“Blue” (hot ) edge occurs when the n=1, l=1 mode 
satisfies !¿C ¼ 1, where ¿C ¼ 4 ¿thermal at the 
base of the convection zone (Wu & Goldreich, late 1990’s)  



White Dwarf Seismology 

center surface 



White Dwarf Seismology 

center surface 



Chemical Profiles produce bumps in N 

The composition 
transition zones 
produce bumps 
in N  

DBV model 
M = 0.6 M¯ 
Teff= 25000 K 

center surface 



The composition 
transition zones 
produce bumps 
in N  

DAV model 
M = 0.6 M¯ 
Teff= 12000 K 

center surface 



The bumps can “trap” modes… 
Unequal sampling 
produces unequal 
period spacings 

DAV model 
M = 0.6 M ̄

Teff= 12000 K 
n=16 



The bumps can “trap” modes… 
Unequal sampling 
produces unequal 
period spacings 

DAV model 
M = 0.6 M ̄

Teff= 12000 K 
n=17 



The bumps can “trap” modes… 
Unequal sampling 
produces unequal 
period spacings 

DAV model 
M = 0.6 M ̄

Teff= 12000 K 
n=18 



The “vibrating string” analogy 

2 Montgomery

Figure 1. Mode trapping on a string. Bumps in the “sound speed” c on
a string (upper panel) produce kinks in the eigenfunctions (lower 2 panels)
which cause the modes to have different amplitudes on either side of the
bumps. Note: the narrow bump has a much greater effect than the other
bumps, even though their heights are comparable.

Although this approach collapses the finite size bumps to a point, some
spatial information is retained, since both the width of the bump and the local
wavelength of the eigenfunction are correctly taken into account in doing the in-
tegral. For instance, wider bumps produce less mode trapping since they are not
sharp with respect to the mode wavelengths, and, similarly, high overtone modes
(having short wavelengths) do not experience the bumps as sudden changes, so
they show much less mode trapping. These effects can be seen in Figure 1.

3. Analytical Model for Pulsating Stars

An equation completely analogous to that for the vibrating string may be used
for stellar pulsations. Deubner & Gough (1984) and Gough (1993) showed that
the pulsation equations in the Cowling approximation can be written in the
simple form

d2ψ

dr2
+ K2(r)ψ(r) = 0, where K(r) ≡ ω2 − ω2

c

c2
− L2

r2

�

1− N2

ω2

�

, (4)

N2 is the Brunt-Väisälä frequency, c2 is the sound speed, ω2
c is the acoustic cutoff

frequency, r is the radius, ω is the oscillation frequency, and L2 = �(� + 1); here
ψ ≈ δP/ρ1/2 is a scaled version of the Lagrangian pressure variation.
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Abstract.
I present a simple analytical model for mode trapping, which is applicable

to both pulsating stars and vibrating strings. I show that this approach is able

to reproduce the mode trapping structure seen in white dwarf models, and I

show how it compares to data of the star GD 358.

1. Astrophysical Context

Mode trapping occurs when strong features in a model, and presumably the star,

cause the different pulsation modes to sample the interior structure of the model

quite differently. As a result, the period differences between consecutive radial

overtones are not constant, as would be the case if the model were “smooth”, but

rather vary significantly, having pronounced minima which recur as the period

increases (the “trapping cycle”). Such effects have conclusively been seen in the

data of several stars (e.g. Winget et al. 1994, 1991).

In what follows, I derive a simple formalism for describing the mode trapping

of a vibrating string and show how it applies to models of real stars.

2. Mode Trapping on a Vibrating String

Mode trapping occurs because stars (or strings) are not uniform. For g-modes

in a star this means having one or more “bumps” in N2
, whereas for a vibrating

string it could mean a bump in its density or sound speed (e.g. a “bead on a

string”).

In order to proceed analytically, I have assumed that the string is uniform

except for a Gaussian bump in its sound speed (with height B and width b−1
).

Thus, the eigenfunction equation and its solution are

d2ψ

dx2
+

ω2

c2
ψ = 0 (1)

c2
= c2

0

�
1 + Be−b2(x−x0)2

�
(2)

ψ =

�
A sin

�nπx
L

�
if x ≤ x0

A�
sin

�nπx
L + const.

�
if x ≥ x0

(3)

Using the above quantities, one can integrate equation 1 from one side of the

bump to the other in order to determine the jump conditions on ψ at the point

x0 (i.e., the constant in equation 3). Figure 1 shows how multiple bumps on an

otherwise smooth string produce kinks in the eigenfunctions.

1

Replace the “usual” oscillation equations (e.g. Gough 1993)   

with those of a “beaded” string: 

This reasoning also led to an understanding 
of the core/envelope symmetry for 
pulsations having a single l value in WDs 
(Montgomery, Metcalfe, Winget 2003) 



The “vibrating string” analogy 

black=numerical model of Corsico et al. 2005 
red=simplified mode-trapping on a string 

Good qualitative agreement for shape of trapping diagram, is 
reasonable even in the ‘non-perturbative’ regime 
(Montgomery 2005) 



Core composition and reaction rates 

Central oxygen abundance 
of GD358 is XO=0.67-0.76 

Required reaction rates 
for C12(alpha,gamma)O16 

are in agreement with 
accepted values 

Metcalfe, Salaris, & 
Winget 2002, ApJ, 573, 
803 

Metcalfe, Nather, & 
Winget 2000, ApJ, 545, 
974  

(Metcalfe 2003) 



Hydrogen envelope thicknesses 

Ensemble asteroseismology 
of 44 DAVs has yielded 
information on the 
distribution of hydrogen 
layer masses 

(Romero et al. 2011) 

Ensemble asteroseismology of ZZ Ceti stars 19
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Figure 10. Histograms showing the mass distribution for the
sample of 44 ZZ Ceti stars considered in this work, according to
our spectroscopic inferences (lower panel) and our seismological
analysis (upper panel).

that the samples of stars analysed are not the same, we
consider that the 〈M∗〉seis value derived in this work and
that derived by Castanheira & Kepler (2008, 2009) are in
very good agreement.

4.3.4 The thicknesses of the hydrogen envelope

One of the most important structural parameters we want
to constrain through asteroseismology of ZZ Ceti stars is the
thickness of the H envelope in DA white dwarfs. We have
found a H layer mass of MH = (1.25 ± 0.7) × 10−6M∗ for
G117−B15A, about two order of magnitude thinner than the
value predicted by canonical evolutionary computations, of
MH ∼ 10−4M∗. Here, the analysis of a large number of ZZ
Ceti stars allows us to explore the distribution of H enve-
lope thicknesses from their pulsations. In Fig. 11 we present
histograms of the distribution of H envelope thicknesses. In
the upper panel we show the results for the complete sam-
ple of 44 stars. Note that there is a pronounced maximum of
the distribution for log(MH/M∗) in the range −5 to −4, al-
though there exists another, much less notorious maximum
for log(MH/M∗) between −10 and −9. So, it is apparent
from the figure that there exists a range of thicknesses of
the H envelope in the studied DAV stars, with a strong
peak at thick envelopes and another much lower peak at
very thin envelopes, and an apparent paucity for intermedi-
ate thicknesses. In the middle panel of Fig. 11 we show the
histogram corresponding to the asteroseismological models
characterized by canonical (thick) H envelope thicknesses,
that amount to 11 stars. Finally, in the lower panel we dis-
play the histogram for the non-canonical thicknesses, that
is, envelopes thinner than those predicted by standard evo-
lutionary computations depending on the value of the stellar
mass. As in previous sections, we refer this kind of envelopes
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Figure 11. Upper panel: histogram showing the H envelope
thickness distribution for the sample of 44 ZZ Ceti stars con-
sidered in this work. Middle panel: histogram for models with
canonical (thick) H envelope thicknesses. Lower panel: histogram
for models with non-canonical (thin) envelope thicknesses.

as “thin” envelopes. We recall that these “thin” envelopes
have been generated in this work in order to extend the
exploration of the parameter space of the models for as-
teroseismology. Note that in most of the analysed stars (34
stars from a total of 44) our asteroseismological models have
“thin” H envelopes, as illustrated in Fig. 12. It is important
to note, however, that most of our derived envelope masses,
even being thinner than the canonical values, cluster close
to the envelope masses predicted by standard evolutionary
computations, at variance with those of Castanheria & Ke-
pler (2009), who found a nearly homogeneous distribution
of envelope masses in their fits (see their Fig. 8).

The mean value of the H layer mass is 〈MH/M∗〉 =
2.71 × 10−5 according to our results. This value is about
50 times larger than the value obtained by Castanheira &
Kepler (2009) with different samples, 〈MH/M∗〉 = 5.01 ×
10−7. In spite of this difference, both studies concur to the
conclusion that an important fraction of DA white dwarfs
might have been formed with a H mass smaller than the
value predicted by standard evolutionary computations, a
conclusion we have already suggested at end of Section 4.2
on the basis of our results on G117−B15A.

5 CONCLUSIONS

In this paper, we have carried out the first asteroseismolog-
ical application of the evolutionary DA white-dwarf models



A one-component plasma 
(OCP) -- all the particles 

are identical 

) regular lattice structure 

in 3D, ¡Crys = 178 

Crystallization… 



From our paper… 

summary: either these WDs have no significant Oxygen or 
¡Crys » 220 



Crystallization… 

(Montgomery & Winget 1999, 526, 976) 

Metcalfe, Montgomery, & 
Kanaan (2004, ApJ, 605, L133) 
claimed that the DAV BPM 
37093 was 90% crystallized 

Brassard & Fontaine (2005, 
622, 572) claim this number is 
between 32% and 82% 



Only the red bump is needed… 

From asymptotic theory, only a single  bump at Πηι » 0.236, 
which is far out from the core, is needed to fit the periods 
extremely well 

     10%  
crystallized 



Only the red bump is needed… 

If 90% crystallized then inner C/O bump is covered up, fits data  
much better 

90%  
crystallized 



Convective light curve fitting (Montgomery 2005) 
--based on work of Wu & Goldreich and Brickhill 

Whole Earth Telescope (WET) – 1995 

Single site data – May 2004 



PG 1351+489 (DBV) 
Whole Earth Telescope (WET) – 1995 

Single site data – May 2004 

τC= 86.7 sec 
N=22.7 
θi=57.8 deg 
l=1,m=0 
Amp=0.328 



PG 1351+489 (DBV) 
Whole Earth Telescope (WET) – 1995 

Single site data – May 2004 

τC= 86.7 sec 
N=22.7 
θi=57.8 deg 
l=1,m=0 
Amp=0.328 

τC= 89.9 sec 
N=19.2 
θi=58.9 deg 
l=1,m=0 
Amp=0.257 



Period (s) ell m 
422.561 1 1 
423.898 1 -1 
463.376 1 1 
464.209 1 0 
465.034 1 -1 
571.735 1 1 
574.162 1 0 
575.933 1 -1 
699.684 1 0 
810.291 1 0 
852.502 1 0 

962.385 1 0 

Montgomery et al. 2010 

¿0 ~ 586§ 12 sec 
µi ~ 47.5 § 2.2 degrees 

Light curve fit of the multi-periodic GD358 



Bonus: frequency splittings, phases, and amplitudes of 
the modes all indicate oblique pulsation for 6 of the peaks 8 Montgomery et al.

Table 4
Frequency solution for oblique pulsation model:

frot = 5.362±0.003 µHz

Frequency (µHz) Amplitude (mma) Phase (rad) ∆Φ/2π Independent Freqs.
a

Triplet 1

1736.302 ± 0.004 16.77 ± 0.13 0.739 ± 0.008 1736.302 ± 0.001

1741.664 ± 0.003 10.81 ± 0.13 2.832 ± 0.012 0.510 ± 0.013 1741.665 ± 0.001

1747.027 ± 0.004 1.75 ± 0.13 1.724 ± 0.075 1746.673 ± 0.007

Triplet 2

1738.362 ± 0.005 0.95 ± 0.13 1.268 ± 0.138 1737.962 ± 0.007

1743.725 ± 0.003 5.56 ± 0.13 0.174 ± 0.023 0.517 ± 0.023 1743.738 ± 0.002

1749.087 ± 0.005 12.55 ± 0.13 2.117 ± 0.011 1749.083 ± 0.001

a
These are the unconstrained frequency fits of Provencal et al. (2009).

splitting is caused by the rotation of the star, these frequencies

must be equally split to within measurement errors. This is the

first and most stringent condition the model must face.

Second, the oblique pulsator model predicts a specific phase

relationship for the peaks in a given geometric triplet (or for

higher �, a (2� + 1)-multiplet). From Kurtz & Shibahashi

(1986), an � = 1 mode generically has luminosity variations

given by

∆L/L = A− cos[(ω −Ω)t +φ]

+ A0 cos[ωt +φ] + A+ cos[(ω +Ω)t +φ], (7)

where ω and Ω are 2π times f and frot, respectively (see Ap-

pendix A for the complete expressions). These components

will only have the same phase φ for a particular choice of the

zero point of time. For other zero points one can show that

this phase relation translates to

2Φ0 − (Φ+ +Φ−) = 0, (8)

where {Φ−,Φ0,Φ+} are the measured phases of the respective

components. In general, the product A−×A+ can be negative.

For this case, if we define the amplitudes always to be positive

and absorb any minus signs into the phase for each peak, the

relation becomes

2Φ0 − (Φ+ +Φ−) = π. (9)

Defining ∆Φ ≡ 2Φ0 − (Φ+ + Φ−), then from the sign of the

amplitudes in equations (A2)–(A4) we see that ∆Φ/2π = 0

for m = 0 modes and ∆Φ/2π = 0.5 for m = ±1 modes. These

phase relations, while less iron-clad than the equal spacing of

the triplets, should be satisfied within the errors for geometric

peaks split by oblique rotation.

A third condition/prediction is the relative amplitudes of the

geometric peaks. Such a calculation makes assumptions con-

cerning the nature and strength of the magnetic field, so this

prediction of the model is the least reliable of the three. In

equations (A2)–(A4) in Appendix A we give expressions for

the amplitudes of the various components of � = 1 modes per-

turbed by a magnetic field and oblique rotation. The relevant

parameters are the inclination angle of the rotation axis, θi,
the obliquity of the magnetic axis, β, and x1. The parameter

x1 is given by

x1 ≡
ω(1)

0
−ω(1)

1

Ck � Ω
, (10)

where Ck � is the rotational splitting coefficient due to the Cori-

olis force, Ω is the angular frequency of rotation, and ω(1)

0

and ω(1)

1
are the perturbations to the frequencies of the m = 0

and m = 1 intrinsic modes due to the magnetic field, respec-

tively. Even though this is clearly a more model dependent

statement, we would still hope that the amplitudes could ap-

proximately be fit and/or predicted within the oblique pulsator

formalism.

6.2. The Results
First, we consider a fit to the k = 12 region of the FT, from

1730–1750 µHz. Provencal et al. (2009) found 6 significant

peaks in this region. We interpret these peaks as resulting

from 2 components of an � = 1 mode, each split into a geo-

metric triplet by oblique pulsation. These two original peaks

are part of an intrinsic triplet produced by standard rotational

splitting, but the amplitude of the third member is below our

detection threshold.

We fit two sets of exactly evenly split triplets to the data set,

where the central frequencies of each triplet are 1741.664 and

1743.725 µHz, and the value of the splitting is 5.362 µHz.

The values of the fit parameters we obtained are given in Ta-

ble 4. In Figure 8 we show the result of pre-whitening the

k = 12 region by this solution. The reduction in power of the

FT is very significant, showing that evenly split triplets are a

good representation of the data. This is a necessary condition

for the oblique pulsator model to be applicable.

Second, we consider the phase relations within each of

these equally split triplets. From Table 4 we see that the first

triplet has ∆Φ/2π = 0.510±0.013 and that the second triplet

has ∆Φ/2π = 0.517±0.023. The oblique pulsator model also

passes this test with flying colors. In addition, the fact that

∆Φ/2π ∼ 0.5 rather than 0.0 implies that the modes are not

axi-symmetric, i.e., |m| = 1 for both modes. For whatever rea-

son, the m = 0 member of the original triplet is not present at

observable amplitudes.

Finally, we wish to test the ability of the oblique pulsator

model to adequately reproduce the amplitudes of the geomet-

ric peaks. To calculate the amplitudes we use the analytical

expressions given in Appendix A (see Unno et al. 1989; Kurtz

& Shibahashi 1986) and to perform the fits we have used a ge-

netic algorithm (Charbonneau 1995). This allows us to search

the m values of each intrinsic triplet as well as the values of

the parameters θi, β, and x1. As we demonstrate below, such

a fit is more constrained than one would think given the six

data points and five free parameters.

In Figure 9 we show the result of the fit to the amplitudes in

Table 4. The fit is quite impressive. It has the added bonus that

triplets 1 and 2 are required to originate from |m| = 1 intrinsic



What we’ve learned so far… 

Results are only marginally consistent with MLT for 
the DAVs…but we need better temperatures! 

DAVs DBVs 

– 32 –

Fig. 18.— Comparison of EC14012-1446’s derived convective parameters with values expected from ML2/α convec-
tion. The labeled points are individual objects taken from Montgomery (2005a), Montgomery (2011), and Provencal
et al. (2011). The curves represent theoretical calculations of the thermal response time for the convection zone for
various values of the MLT mixing length α.



Photoionized Plasma White Dwarf Spectra Solar Opacity 

Laboratory Astrophysics at Sandia National Labs  
Z Facility 

Collaborator:  
 Anil Pradhan et al.,  

 Ohio State University 

SNL POC: 
 Jim Bailey 

Purpose: 
 Test Fe opacity models 

at conditions relevant to 
the convection zone 
boundary in the Sun. 

Required Conditions: 
Te ~ 180 eV, ne ~ 1023 cm-3 

Collaborator:  
 Roberto Mancini et al., 

 University of Nevada - 
Reno 

SNL POC: 
 Jim Bailey 

Purpose: 
Test photo-ionization models 
of Ne at conditions relevant 
to black hole accretion disks. 

Required Conditions: 
Te ~ 15 eV, ne ~ 1018 cm-3 

Collaborator:  
 Don Winget et al., 
 University of Texas 

SNL POC: 
 Greg Rochau 

Purpose: 
 Test Stark-broadening 

theory of H at conditions 
relevant to White Dwarf 

photospheres. 

Required Conditions: 
Te ~ 1 eV, ne ~ 1017 cm-3 



Carbon surface layer 

New class of white dwarfs: the 
carbon-dominated hot DQs 

Carbon and  
Oxygen core pretty simple 



New Class of WD Pulsator 
(Montgomery et al., 2008) 

•  Carbon-dominated atmosphere  
 (Dufour et al., 2008 Nature) 

•  First new class of WD pulsator in 25 years 
•  prototype has high magnetic field (~2 Mega Gauss) 
•  five known members of class 
•  about half are magnetic (> 1 Mega Gauss) 

  ) may be able to learn about pulsation, convection, 
magnetic field interactions 



And here they are… 

DQV	





Final topic: Extremely Low-Mass White (ELM) White Dwarfs 



On Monday and Tuesday nights (Oct. 24th & 25th) JJ 
Hermes at McDonald Observatory found this star: 

Teff = 9140 +/- 170 K, log g = 6.16 +/- 0.06, M = 0.17 Msun 



New ELM  
variable 

M ~ 0.17  
      Msun 



•  orbital period is 5.68 hr 
•  not commensurate with 
these frequencies 

•  appears to be a multiperiodic 
pulsator 

Mode Freq (muHz) Period (sec) 

F1 236.8 4223  

F2 420.9 2376 

F3 633.5 1579 

F4 254.2 3933 

F5 858.6 1165 

F6 473.5 2112 



Summary 
•  Pulsating white dwarfs allow us to:   

–  Constrain their core chemical profiles 
–  Constrain the physics of crystallization  
–  Probe the physics of convection  
–  Look for extra-solar planets  
–  Test the properties of exotic particles such as plasmon 

neutrinos and axions 
–  Constrain accretion in CV systems 
–  improve our white dwarf models for  
    white dwarf “cosmochronology” 

Thanks! 


