Probing the Interior of the Nearby Supernova Progenitor: Rigel ɛ-Mechanism exciting g-modes

Ehsan Moravveji IASBS, Zanjan, Iran Villanova University

Collaborators: Edward F. Guinan, Villanova University, USA Andres Moya, Madrid, Spain Witch Head Nebula ≈ 300 pc away size 3×1° Illuminated by Rigel

Rigel (β Ori) B8 Ia T_{eff} = 12 100± 150 Mbol=-7.9±0.28 264±24 pc M≈18.5 Msun R≅79 Rsun ~10 Myr old

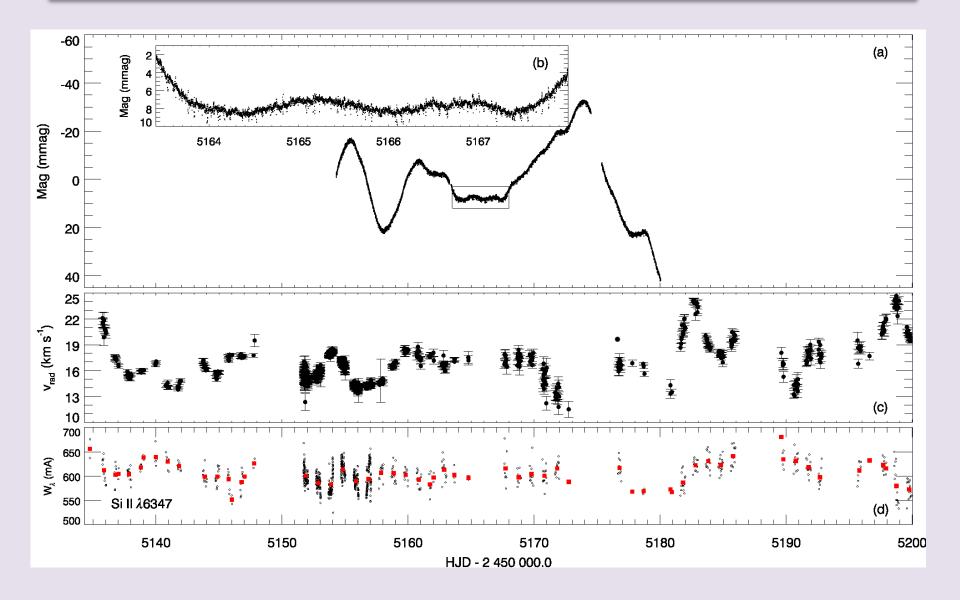
APOD: 29 December 2009

Introducing Rigel (B8 la, V=0.12)

Parameter	Measured	Modeled	Reference
Hipparcos Distanece	264 ± 24 pc		van Leeuwen (2007)
Effective Temperature T_{eff}	12100 ± 150 K	12077 К	Przybilla et al. (2010)
Surface Gravity log g	1.75 ± 0.10 dex	1.83	Przybilla et al. (2006, 2010)
Angular Diameter θ_{LD}	2.75 ± 0.01 mas		Aufdenberg et al. (2008)
Limb Darkened Radii	$78.9\pm7.4~\mathrm{R}_{\odot}$	80.6	This study
Luminosity log (L/L $_{\odot}$)	5.08 ± 0.10 dex	5.09	This study
Metallicity [M/H]	-0.06 ± 0.10	0.00	Przybilla et al. (2006)
Surface Helium Y	0.32 ± 0.04	0.31	Przybilla et al. (2010)
Surface (N/C)	1.74 ± 0.60	1.86	Przybilla et al. (2010)
Surface (N/O)	0.52 ± 0.13	0.50	Przybilla et al. (2010)
Projected Velocity v sin i	24 ± 3 km s ⁻¹	30	Simon-Diaz et al. (2010)
Mass Loss rate	$1\text{-}2{ imes}10^{-7}~{ m M}_{\odot}~{ m yr}^{-1}$	3×10 ⁻⁸	Chesneau et al. (2010)
Evolutionary Mass		$18~{ m M}_{\odot}$	This work

MOST Photometry

AST/TSU Spectroscopy

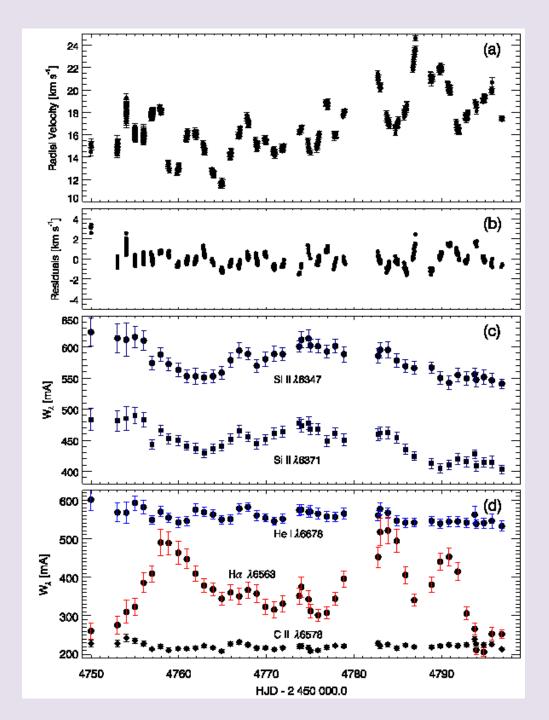


- 15 November to 13 December 2009
- Duration: 27.7 days
- 30 640 measurements
- Observed through Fabry lens
- Precision about 0.5 to 0.10 mmag.

- 2-m AST at Fairborn Observatory, Arizona
- 2328 spectra taken over 6 years, from December 2003 to February 2010
- R ≈ 30 000 to 20 000; SNR ≈ 50 to 150
- 442 spectra during MOST photometry
- RV measured from 29 metallic lines.

Simultaneous LC, RV and EW

Another Season

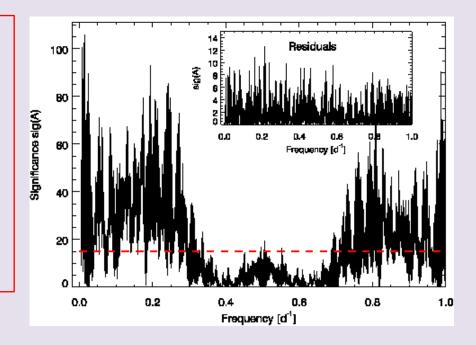

- > A year before MOST photometry.
- > Panel (a) is **50** day of radial velocity
- Panel (b) residuals.
- Panel (c) is equivalent widths of
 Si II λ6347 and Si II λ6371 lines.
- > Panel (d) equivalent widths of **He I** λ 6678 and **H** α and **C II** λ 6578.

Any Correlation?

- Between equivalent widths almost NO.
- Between equivalent widths and radial velocity almost NO (De Ridder et al. 2002).
- Between photometry and radial velocity YES.

Strict Regularity?

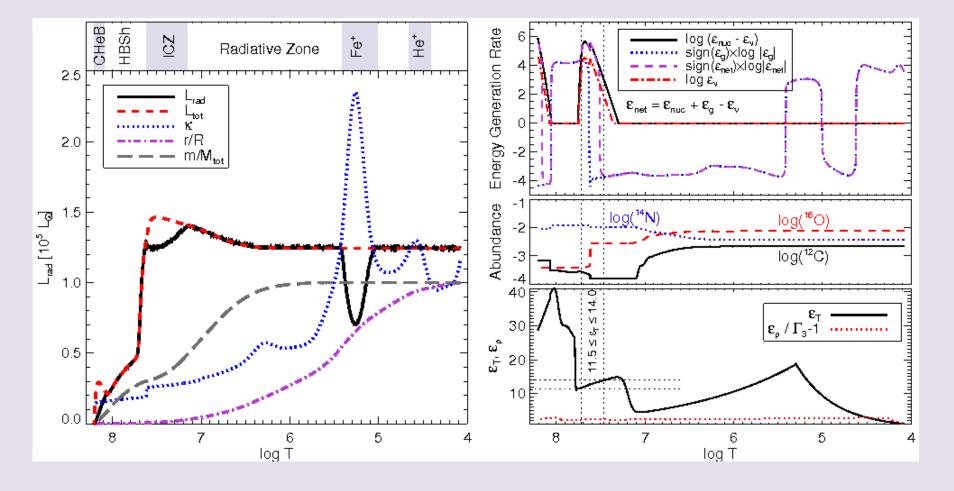
Seems very likely in the radial velocity variations.

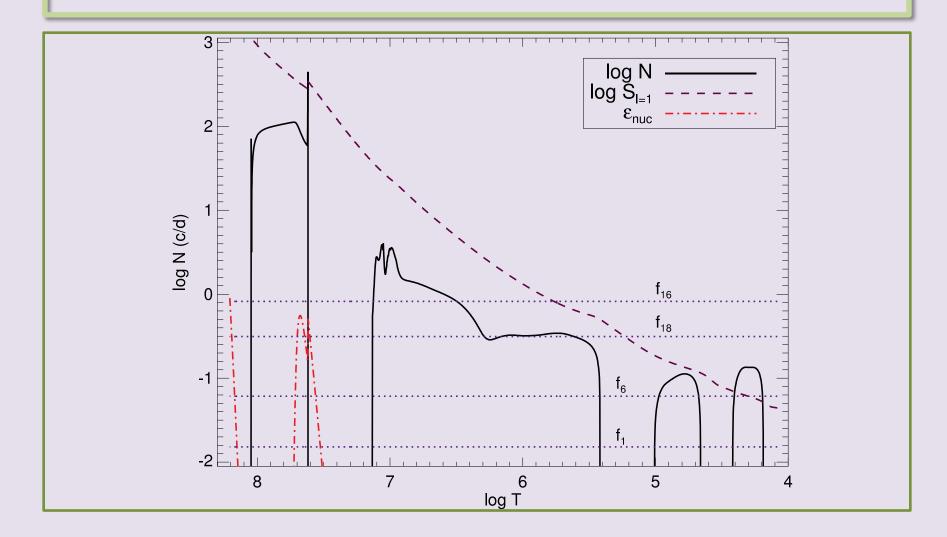


Frequency Analysis

SigSpec and Period04

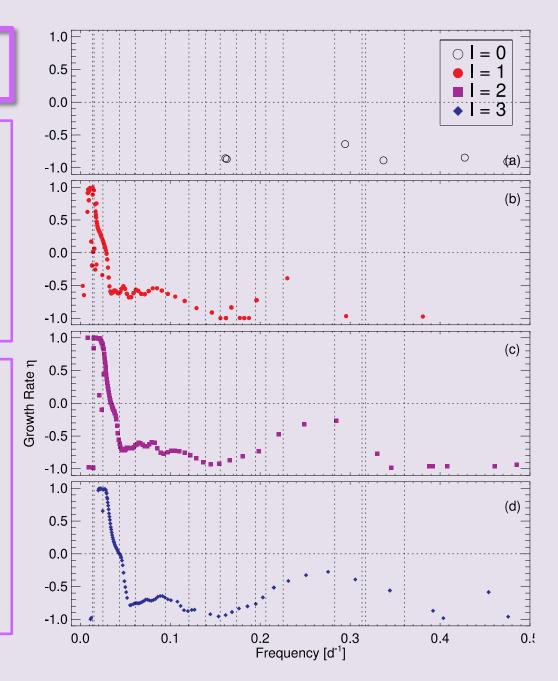
- Using SigSpec with the threshold significance of sig = 15 (or SNR≅4.6) yields 19 frequencies.
- Same results with **Period04**.
- Shortest period and it's amplitude: (1.21 days, 0.404 km s⁻¹)
- Longest period and it's amplitude:
- (74.74 days, 0.839 km s⁻¹)


Significance Spectrum

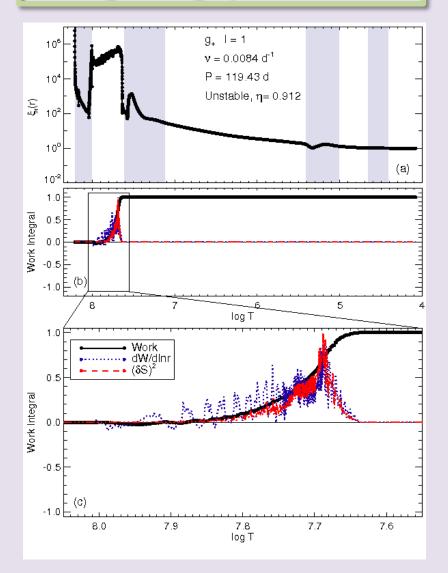

Modeling Internal Structure

- Initial Mass: 19 $\rm M_{\odot}$
- Initial $v = 200 \text{ km s}^{-1}$
- Solar metallicity, GN93 Abundances.
- Rotational mixing as in Heger et al. 2005
- No overshooting
- Rotationally enhanced mass loss

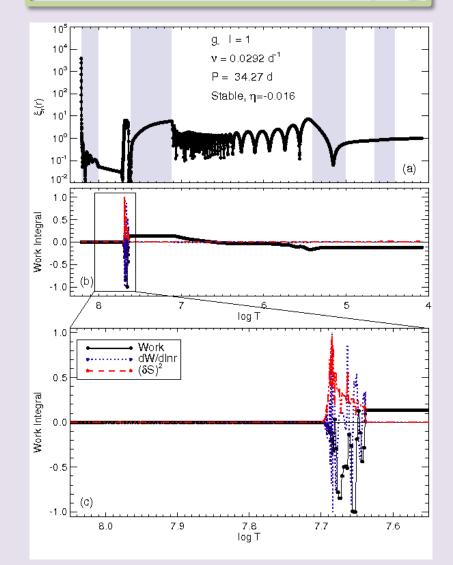
Propagation Cavities



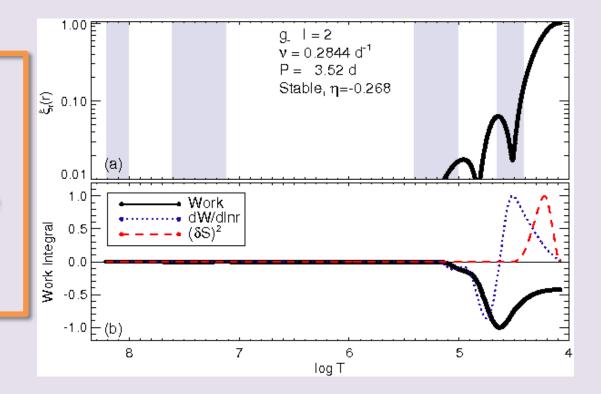
Stability Analysis


- Granada Oscillation Code (GraCo, Moya et al. 2004),
- > Fully non-adiabatic analysis,
- No pulsation-atmosphere interaction,
- Frozen convection is assumed.

Results:


- 1 Radial modes are stable,
- 2 Low-frequency modes are destabilized by ε-mechanism,
- 3 Periods range from 26 to 120 d.
- 4 High-frequency modes are all stable,
- 5 Tendency towards instability around 0.3 d⁻¹.

Strong driving by ϵ -mechanism



The Effect of Radiative Damping

The Role of **k**-mechanism

- The tendency towards overstability raises from He⁺ opacity bump.
- No modes are excited.
- Further investigations are necessary to understand the nature of short-term periodicities.

Summary

- > Long period (\approx 26 to 120 d) pulsations in the α Cyg type BA supergiants can be explained by the ϵ -mechanism.
- Our model (with rotational mixing) shows that the H-burning shell (HBSh) lies partly in the radiative zone below the intermediate convective zone.
- > This helps overcoming the large radiative damping.
- Only g-modes with relatively high amplitudes at the HBSh can survive the huge radiative damping below ICZ.
- Shorter period modes are stabilized by the κ-mechanism operating at the Fe- and He-bumps of opacity.
- > Our state-of-the-art model of Rigel predicts stability for this short period modes.

This study is supported by the NASA/MOST grant NNX09AH28G.

Fate of Rigel:

Type II Supernova
M_v (max) ~ -17.5 mag
V-mag ~ -10.5 mag
(about ~1/4 Moon)

Special Thanks to Bill Paxton