Galactic sources of high-energy positrons

Martin Pohl

Cosmic-ray electrons

Excess at 500 GeV

Dashed line:
Normal CR electrons

Dotted line: Kaluza-Klein DM

Needs boost by ~200

Positrons with Pamela

May be a new source of electron-positron pairs but no excess in antiproton spectra

September 2009

Kaluza-Klein dark matter

- Interest: Could be dark matter!
 - Needs boost factor of ~200
 - Needs e+/e- pairs as main decay channel
- Kaluza-Klein dark-matter
 - Produces monoenergetic pairs
 - Supports theories with extra dimensions

• Electron spectrum modified by propagation

The transport equation

Consider main issues:

Energy loss

diffusion

injection

$$D=D_0$$
 E^a

Two classes of models:

pure diffusion

a = 0.6

reacceleration

a=0.33

Dark matter: depends on clump density

Boosting required \rightarrow\$ clumps

Realistic case: mass spectrum

$$\frac{dn}{dM} = n_0 M^{-b}$$

But electron source rate: $Q \propto \rho_0^2 r_0^3 \propto M^d$, $d \approx 1$

$$Q \propto \rho_0^2 r_0^3 \propto M^d$$
, $d \approx 1$

$$\frac{dQ}{d \log M} \propto M^{1+d-b}$$

d+1-b>0 Annihilation dominated by a few massive clumps

Dark matter: depends on clump density

Pure diffusion model

added to normal electron flux

Dotted line: average spectrum

Dashed line: randomly selected spectrum

Color shades:

Light: 68%

Medium: 90%

Dark: 99%

Pulsars may also leak pairs ...

Source spectrum (dotted)

$$Q(E) \propto E^{-1.5} \exp\left(-\frac{E}{E_0}\right)$$

Age in units of energy-loss time at 600 GeV:

$$\xi = 1 \iff t = 140,000 \text{ yrs}$$

Distance in units of diffusion distance at 600 GeV

$$\left(\frac{\rho}{0.23}\right) = \left(\frac{r}{700 \,\mathrm{pc}}\right)^2$$

The riddle: which is which?

All 8% energy resolution

A)Homogeneous dark matter

B)Clumpy dark matter

C)Pulsar

Distance 1.1 kpc Start time 70 kyr End time 14 kyr

MP, PRD 79, 041301 (2009)

Fermi-LAT data and other sources

LAT data: much weaker excess (Abdo et al. 2009)

Narrow peak would have been seen!

Positron excess must roll off at ~ 200 GeV

LAT data and other sources

Uncertainty in power-law index much smaller

than local fluctuations (Grasso et al. 2009)

Assume SNR as electron sources

(following MP+ Esposito 98; MP et al. 03)

September 2009

KITP

LAT data plus pulsars

Assume pulsars provide extra positrons to fit PAMELA @ 50 GeV

Injection spectrum $Q \propto E^{-1.5} \exp[-E/(600 \,\text{GeV})]$

Other pulsars are important!

→ Broad bump

Careful: Here D \sim E^{0.33}

September 2009

KITP

Limits on dark-matter annihilation

Too high extragalactic background

(e.g. Profumo & Jeltema)

Too high gamma-ray intensity from GC region

(e.g. Zhang et al., Boriello et al., Maeda et al., Ullio et al.)

The LAT isotropic diffuse flux (200 MeV – 100 GeV)

Limits on dark matter decay

Inverse-Compton emission from electrons/positrons

Exceeds preliminary
EDGB spectrum
from Fermi

(Pohl & Eichler in prep.)

Conclusions

- Positron excess seen with PAMELA
 - No excess in antiproton data
 - Can't extend much beyond ~ 200 GeV
- Investigate pulsars, DM annihilation and decay
 - Annihilation implies strong γ-ray signal from GC
 - lacktriangle Decay implies strong γ -ray signal from Galactic poles
 - **Positron production near SNR shocks** \rightarrow B/C ratio?
 - Pulsar scenario is least uncomfortable
 - Pulsars also explain WMAP haze

Postdoc positions available

Potsdam University/DESY Zeuthen

pohlmadq@gmail.com

Backup slides

Known for 40 years:

Rotation curves are flatter (B) than expected for observed matter (A)

Dark matter

Structure formation → **Dark matter must be cold!**

Can't be gas!

Colliding clusters:

Blue: (dark) matter

Red: (hot) gas

Indirect detection: cosmic rays

Galactic cosmic rays

Relativistic charged particles

88% p, 10% α , 1% e⁻¹

Gamma rays from

$$p + p \rightarrow \pi^0 \rightarrow \gamma$$

Antiparticles from, e.g.,

$$p + p \rightarrow \pi^+ \rightarrow e^+ + v$$

Also from dark matter

What will GLAST/Fermi add?

Designed to measure gamma rays, but can also measure electrons

No bump?

Low-energy analysis of HESS data

→ No bump!

Bumpyness for SNR origin

Compare with power law between 65 GeV and 680GeV

September 2009

Bumpyness for SNR origin

Average fluctuation level

- I data
- J power-law

$$\chi = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \frac{\left(I - J_{PL}\right)^{2}}{J_{PL}^{2}}}$$

Fluctuations in LAT data enhanced by errors

→ no evidence for additional sources