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DSA - The diffusion approximation
I Transport equation
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I Steady-state test particle solution:
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where q = 3r/r − 1

I N(E) ∼ E−2 for strong shocks -
consistent with GCR spectrum
allowing for energy-dependent
propagation

I Shape of the spectrum is
independent of κ.
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Wave modification supernova shock precursors

I CRs stream at ≈ shock
speed

I Streaming instability
(resonant Alfvén waves
neglecting dissipation)
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Observational evidence of MFA?? (Long et al. 2003)

Lmin ≡ κ/u ∼ 1019γ
1/2
keV B−3/2

3µG u−1
108cm

Chandra resolution at 2 kpc ∼ 3× 1016 cm



Cosmic-ray current driven instability (Bell 2004)

I 3 component plasma - thermal electrons, protons +
non-thermal protons (CRs)

I non-thermal protons provide current - Jcr ≈ encr vsh

I zero net current and charge∑
qsnsvs = 0,

∑
qsns = 0

∇× B =
∑
α

Jα = JMHD + Jcr

I Linearizing the
MHD/kinetic equations
results:

ω2 = v2
Ak2±B0Jcr

ρ0c
k [1−S(k)]
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Resonant Mode krg0 < 1- linear theory
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I waves are unmodified, i.e. ωr = vAk
I growth rate given by ion-cyclotron resonance
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where pres = eB/ck , σ = − ∂ ln f
∂ ln p

Kulsrud & Pearce, Melrose & Wentzel, Cesarsky etc.



Non-resonant mode - Growth and saturation
I Condition for non-res instability ζM2

A � 1
I Maximum growth rate

Γmax =
1
2
ζMA

vs

rg
where ζ =

ncr pres

n0mpvs

I saturation when currents associated with waves:

|k× δB| ≈ 4πncr eβsh

I k ∼ 1/rg - saturated field energy

B2
w

8π
∼ Ucrβsh = ηρu2

shβsh

I fast, efficiently accelerating shocks
ideal for magnetic field amplification

I What do the numerical simulations
tell us?



Numerical simulations

I quasi-linear steady-state solution
I CRs stream at ≈ shock speed
I simulation box Lbox � κ(pmin)/u
I Box is periodic
I jcr (x, t) = const.

although see
Lucek & Bell 2001,
Zirakashvili et al 2008,
Niemiec et al. 2008,
Riquelme & Spitkovsky 2009

I jcr‖B0

I jcr · E = u · (jcr × δB)

I once fluid is set in motion,
energy pumped into
system increases



Numerical simulations-MHD (Bell 2004)



Numerical simulations-MHD (Bell 2004)



Numerical simulations - Non-linear structure

Bell 2004 Zirakashvili et al. 2008 BR et al. 2008

I Structures are approaching scale of simulation box
I However, no bulk acceleration of fluid observed



Particle in Cell simulations

vd ,cr = 0.1c
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Test particle transport in amplified field

I Take a snapshot of field in early stages of non-linear
development, kLbox ≈ 1

I determine statistical properties of field lines and diffusion

I integrate particle trajectories

dp
dt

= qv× B

dx
dt

= v

for many particles, random initial positions and directions



Diffusion coefficients
Comparison of diffusion coefficients to Bohm limit in the
pre-amplified field B0 = 3µG, Brms ∼ 15µG

κ‖/κBohm, κ⊥/κBohm
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Cosmic-ray modified shocks - Non-linear DSA
I When CR pressure becomes large we must go beyond

test-particle limit

u

P
CR

x=0

I Cosmic ray pressure gradient decelerates incoming
plasma

I Total shock compression ratio ρds/ρ0 > 4
I sub-shock compression ration< 4
I larger effective compression ratio, hardens spectra at

higher energies



Cosmic-ray modified shocks - Free escape boundary
I Scattering waves are self-generated

I At a certain distance upstream, growth of hydromagnetic
waves too slow to confine particles - CRs decouple from
plasma

I magnetic field growth (amplification) driven in transition
region



Steady-state solutions

I coupled hydrodynamic - kinetic equations
I mass & momentum conservation

ρ(x)u(x) = ρ0u0,

Pcr(x) + ρ(x)u(x)2 + Pg(x) = ρ0u2
0 + Pg,0

I time dependent transport equation
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I Additional boundary condition f (Lesc) = 0

See BR, Kirk & Duffy 2009 for details



Steady-state solutions - method of solution

I what is the location of escape boundary - transition zone
from weak to strong turbulence

I diffusive current at escape boundary drives growth of
waves

jcr(−Lesc) = −4πe
∫ ∞
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κ
∂f
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p2dp , Lesc =
κ(p∗)
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I nonresonant mode growth dominates provided:
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Injection efficiency ν − R diagram
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I Lesc determines max. energy
I How to determine Lesc in

self-consistant manner?



Maximum momentum

I Calculate CR flux (and p∗) from numerical SS solution
I Transition zone determined from condition

Ladv ≡ ush/Γmax ∼ Lesc



Maximum momentum

advL

Lesc

ν

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.01  0.1

105 104 103 102

BR, Kirk & Duffy, ApJ

I Maximum energy can be calculated as a function of
injection parameter



Summary

I Magnetic field amplification a natural consequence of
efficient DSA

I Non-resonant instability first investigated by Bell likely
mechanism

I Non-linear development and saturation still uncertain,
bigger & better simulations required

I time asymptotic solutions to modified shock problem and
boundary conditions investigated

I particle accelerating shocks appear to be self-organising
/self-regulating systems
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