
PICSARs: PIC Simulations of 

Acceleration in Relativistic shocks  

(and nice movies, too!) 

Lorenzo Sironi & Anatoly Spitkovsky 

Nonlinear Processes in Astrophysical Plasmas, KITP 

September 29th, 2009 



Relativistic shocks in astrophysics 

• Are shocks responsible for the nonthermal emission from 

GRBs, PWNe and AGN jets and for the acceleration of CRs?   

• How does the efficiency of particle acceleration depend on the 

magnetic field strength and inclination and the flow composition? 

• How do particle acceleration and magnetic field generation in 

shocks translate into the observed emission signatures? 

Method: Self-consistent first-principle particle-in-cell (PIC) 

numerical simulations… 



Simulation setup  

• Upstream flow is e-- e+ or e-- p+ (mp/me=16-100) cold plasma with 

bulk Lorentz factor 0=15 and magnetization  = Bu
2/(4 0numpc

2) 

= 0-0.1. We also vary the wall-frame magnetic obliquity .  

• 2.5D simulations (100 c/ pe X 9000 c/ pe) with out-of-plane 

magnetic field; main results confirmed by 3D simulations 
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Which magnetization regime?  
• Unmagnetized shocks ( =0): mediated by the Weibel instability  

• Upstream 

(Weibel) filaments 
in density and B 

• Magnetic energy 

generation at the 

shock 
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• Magnetized perpendicular shocks ( =0.1 & =90°): mediated by 

magnetic reflection 

• Density peak due 

to coherent Larmor 
gyration 

• Transverse 

magnetic field 

compression 

Bu Bd> Bu 



=0 vs =0.1 & =90°: shock structure 
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=0 vs =0.1 & =90°: shock structure 
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• In =0 shocks, downstream spectrum well fitted by low-energy Maxwellian + 

high-energy power-law tail with exponential cutoff 

• The nonthermal tail has slope -2.4±0.1 and contains ~1% of particles and 

~10% of energy 

=0 e--e+ shock =0  e--p+ shock (mp/me=32) 

(Spitkovsky 2008) (Martins et al. 2009) 
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=0 vs =0.1 & =90°: particle acceleration 
• For =0.1 & =90° shocks, downstream spectrum is purely thermal 



Acceleration mechanism in =0 shocks 

Fermi-like process: particles get accelerated by 

scattering off the self-generated Weibel filaments 
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What about changing the field obliquity? 

• In superluminal (vs subluminal) shocks, a particle sliding along 

magnetic field lines CANNOT (vs CAN) return upstream 

• For 0=15 and =0.1, the critical obliquity is crit 34° in the wall 
frame; in the upstream frame ’crit 34°/ 0 

• crit weakly depends on both 0 ( 5) and  (0.01< <0.3) 

• How does the field obliquity affect the shock structure and the 

efficiency of particle acceleration? 
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=0.1 & =15°: a subluminal shock 
e--p+ shock (mp/me=16) e--e+ shock 

Subluminal  Returning particles (mostly IONS for e--p+ shock) 
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=0.1 & =15°: a subluminal shock 

 Returning particles  Upstream waves (oblique vs longitudinal 

wavevector, linear vs circular polarization)

e--p+ shock (mp/me=16) e--e+ shock 

Density 

Bz 

By 



=0.1 & =45°: a superluminal shock 

Superluminal  No returning particles  No upstream waves

e--p+ shock (mp/me=16) e--e+ shock 
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=0.1 downstream spectra: e--e+ shock 
• Superluminal magnetized shocks DO NOT significantly accelerate, 

subluminal shocks DO, the more efficiently the closer to crit 34° 

As  increases 

from 0° to 30°: 

• Power-law slope  
from -2.8 to -2.3 

• Number fraction 
from 1% to 2% 

• Energy fraction 

from 5% to 13% 
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Acceleration mechanism: low obliquity 
• Diffusive Shock Acceleration (DSA) by stochastic scattering 

between the shock layer and the upstream oblique waves  
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Acceleration mechanism: high obliquity 
• crit: Shock-Drift Acceleration (SDA) by the background Eu after 

particles are reflected upstream along the oblique background Bu 

• Upstream oblique waves mediate the injection process 
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Ions 

Pairs 

Ion spectra resemble pair spectra of e--e+ 

shocks:  

• negligible acceleration for superluminal 

configurations 

• with increasing  from 0° to 30°, slope 

from -3.0 to -2.2, number fraction from 

2% to 5%, energy fraction from 10% to 
25% 
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=0.1 downstream spectra: e--p+ shock 
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Electrons 

Electron acceleration in e--p+ shocks is 

a factor of 5-10 less efficient than ions 

heating 
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=0.1 =15° e--p+ shock: IONS get accelerated by scattering 

off the self-generated upstream longitudinal waves 

Ion vs electron acceleration (1/2) 
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=0.1 =15° e--p+ shock: ELECTRONS are more 

strongly tied to the magnetic field lines and get quickly 

advected downstream 

Ion vs electron acceleration (2/2) 

 



Varying  in e--p+ shocks   

=15° 

=30° 

0.1 0.03 

0.01 

=0 

With increasing , electrons 

are more tied to magnetic 

field lines 

 Once advected 

downstream, it is harder for 

them to come back upstream 

 Lower efficiency of 
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Radiation signatures of =0 shocks 
Radiation spectrum from simulation particles traced in the 

self-consistent fields 

• Low-frequency spectral 

slope is consistent with 

synchrotron theory:  

Line-of-Death puzzle in GRB 

prompt spectra cannot be 

solved by the jitter paradigm 

• Significant contribution to 

the radiation spectrum by 

upstream particles 
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Summary (1/2) 

• Relativistic unmagnetized shocks are mediated by the Weibel 

instability, magnetized ( =0.01-0.1) perpendicular shocks by 

magnetic reflection 

• If =0, ~1% of particles and ~10% of energy are stored in a 

suprathermal tail (both for e--e+ and e--p+ shocks) 

• If 0.01: 

 e--e+ shocks are efficient accelerators (~1% by number, ~10% by 

energy) only for subluminal field obliquities ( < crit 34°) 

 e--p+ shocks:   

   ion acceleration only for subluminal configurations (~3% by 

 number, ~20% by energy) 

   electron acceleration suppressed by a factor of 5-10 wrt ions 

 even for subluminal obliquities, especially for high 

 magnetizations ( ~0.1). 



Summary: particle acceleration (2/2) 

electrons in e--p+ shocks  
e--e+ shock 

(ions in e--p+ shocks)  

• Acceleration via a Fermi-like mechanism for unmagnetized or 

quasi-parallel shocks, via Shock-Drift for crit magnetized shocks 
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Implications 

 Constraints on the composition and magnetization of the flow: 

• If electron-positron plasma, then nearly-parallel shocks (in the 

upstream fluid frame ’crit 34°/ 0) are required for efficient particle 

acceleration; or magnetization must be 10-3 

• If electron-ion plasma, magnetization must be 10-2 regardless of 

the magnetic obliquity, since for ~0.1 shocks, electron 

acceleration is inefficient even for subluminal configurations. 

 Caveats: 

• Long-term shock evolution? Results from 3D simulations? Realistic 

mass ratios? 

• Different magnetic field geometry in the upstream flow: Magnetic 

turbulence? Striped wind?  Acceleration via reconnection? 

• Different composition of the upstream flow: Ion-doped pair plasma? 

 Acceleration via Resonant Cyclotron Absorption? 


