PICSARs: PIC Simulations of Acceleration in Relativistic shocks (and nice movies, too!) Lorenzo Sironi & Anatoly Spitkovsky Nonlinear Processes in Astrophysical Plasmas, KITP September 29th, 2009 #### Relativistic shocks in astrophysics - Are shocks responsible for the nonthermal emission from GRBs, PWNe and AGN jets and for the acceleration of CRs? - How does the efficiency of particle acceleration depend on the magnetic field strength and inclination and the flow composition? - How do particle acceleration and magnetic field generation in shocks translate into the observed emission signatures? Method: Self-consistent first-principle particle-in-cell (PIC) numerical simulations... #### Simulation setup - Upstream flow is e⁻- e⁺ or e⁻- p⁺ (m_p/m_e=16-100) cold plasma with bulk Lorentz factor γ_0 =15 and magnetization $\sigma = B_u^2/(4\pi\gamma_0 n_u m_p c^2)$ = 0-0.1. We also vary the wall-frame magnetic obliquity θ . - 2.5D simulations (100 c/ ω_{pe} X 9000 c/ ω_{pe}) with out-of-plane magnetic field; main results confirmed by 3D simulations #### Which magnetization regime? • Unmagnetized shocks ($\sigma=0$): mediated by the Weibel instability - Upstream (Weibel) filaments in density and ϵ_{B} - Magnetic energy generation at the shock • Magnetized perpendicular shocks (σ =0.1 & θ =90°): mediated by magnetic reflection # σ =0 vs σ =0.1 & θ =90°: shock structure # σ =0 vs σ =0.1 & θ=90°: shock structure σ =0.1 & θ=90° #### σ =0 vs σ =0.1 & θ =90°: particle acceleration - For σ =0.1 & θ =90° shocks, downstream spectrum is purely thermal - In σ=0 shocks, downstream spectrum well fitted by low-energy Maxwellian + high-energy power-law tail with exponential cutoff - The nonthermal tail has slope -2.4±0.1 and contains ~1% of particles and ~10% of energy $$\sigma$$ =0 e⁻-e⁺ shock σ =0 e⁻-p⁺ shock (m_p/m_e=32) (Spitkovsky 2008) (Martins et al. 2009) #### Acceleration mechanism in σ=0 shocks Fermi-like process: particles get accelerated by scattering off the self-generated Weibel filaments #### What about changing the field obliquity? - In superluminal (vs subluminal) shocks, a particle sliding along magnetic field lines CANNOT (vs CAN) return upstream - For γ_0 =15 and σ =0.1, the critical obliquity is $\theta_{crit} \approx 34^\circ$ in the wall frame; in the upstream frame $\theta'_{crit} \approx 34^\circ/\gamma_0$ - θ_{crit} weakly depends on both γ_0 (≥ 5) and σ (0.01< σ <0.3) - How does the field obliquity affect the shock structure and the efficiency of particle acceleration? #### σ =0.1 & θ =15°: a subluminal shock Subluminal → Returning particles (mostly IONS for e⁻-p⁺ shock) #### σ =0.1 & θ =15°: a subluminal shock Returning particles Upstream waves (oblique vs longitudinal wavevector, linear vs circular polarization) #### σ =0.1 & θ =45°: a superluminal shock e^- -p+ shock (m_p/m_e=16) e-e+shock Superluminal → No returning particles → No upstream waves #### σ=0.1 downstream spectra: e⁻-e⁺ shock Superluminal magnetized shocks DO NOT significantly accelerate, subluminal shocks DO, the more efficiently the closer to θ_{crit}≈34° σ=0.1 e⁻-e⁺ shocks As θ increases from 0° to 30°: - Power-law slope from -2.8 to -2.3 - Number fraction from 1% to 2% - Energy fraction from 5% to 13% #### Acceleration mechanism: low obliquity Diffusive Shock Acceleration (DSA) by stochastic scattering between the shock layer and the upstream oblique waves $$\sigma$$ =0.1 θ =0° e⁻-e⁺ shock #### Acceleration mechanism: high obliquity • θ≤θ_{crit}: Shock-Drift Acceleration (SDA) by the background E_u after particles are reflected upstream along the oblique background B_u $$\sigma$$ =0.1 θ =30° e⁻-e⁺ shock Upstream oblique waves mediate the injection process #### σ=0.1 downstream spectra: e⁻-p⁺ shock **lon** spectra resemble pair spectra of e⁻-e⁺ shocks: - negligible acceleration for superluminal configurations - with increasing θ from 0° to 30°, slope from -3.0 to -2.2, number fraction from 2% to 5%, energy fraction from 10% to 25% Electron acceleration in e⁻-p⁺ shocks is a factor of 5-10 less efficient than ions #### Ion vs electron acceleration (1/2) σ =0.1 θ =15° e⁻-p⁺ shock: IONS get accelerated by scattering off the self-generated upstream longitudinal waves ## Ion vs electron acceleration (2/2) σ=0.1 θ=15° e⁻-p⁺ shock: **ELECTRONS** are more strongly tied to the magnetic field lines and get quickly advected downstream ## Varying σ in e⁻-p⁺ shocks With increasing σ , electrons are more tied to magnetic field lines - → Once advected downstream, it is harder for them to come back upstream - → Lower efficiency of electron acceleration, independent of θ ## Radiation signatures of σ=0 shocks Radiation spectrum from simulation particles traced in the self-consistent fields Low-frequency spectral slope is consistent with synchrotron theory: Line-of-Death puzzle in GRB prompt spectra cannot be solved by the jitter paradigm Significant contribution to the radiation spectrum by upstream particles #### Summary (1/2) - Relativistic unmagnetized shocks are mediated by the Weibel instability, magnetized (σ=0.01-0.1) perpendicular shocks by magnetic reflection - If σ=0, ~1% of particles and ~10% of energy are stored in a suprathermal tail (both for e⁻-e⁺ and e⁻-p⁺ shocks) #### • If $\sigma \ge 0.01$: e⁻-e⁺ shocks are efficient accelerators (~1% by number, ~10% by energy) only for subluminal field obliquities (θ<θ_{crit}≈34°) #### e-p+ shocks: ion acceleration only for subluminal configurations (~3% by number, ~20% by energy) electron acceleration suppressed by a factor of 5-10 wrt ions even for subluminal obliquities, especially for high magnetizations (σ ~0.1). #### Summary: particle acceleration (2/2) e⁻-e⁺ shock (ions in e⁻-p⁺ shocks) electrons in e⁻-p⁺ shocks Acceleration via a Fermi-like mechanism for unmagnetized or quasi-parallel shocks, via Shock-Drift for θ≤θ_{crit} magnetized shocks #### **Implications** Constraints on the composition and magnetization of the flow: - If electron-positron plasma, then nearly-parallel shocks (in the upstream fluid frame $\theta'_{crit} \approx 34^{\circ}/\gamma_0$) are required for efficient particle acceleration; or magnetization must be $\sigma \leq 10^{-3}$ - If electron-ion plasma, magnetization must be σ≤10⁻² regardless of the magnetic obliquity, since for σ~0.1 shocks, electron acceleration is inefficient even for subluminal configurations. #### Caveats: - Long-term shock evolution? Results from 3D simulations? Realistic mass ratios? - Different magnetic field geometry in the upstream flow: Magnetic turbulence? Striped wind? → Acceleration via reconnection? - Different composition of the upstream flow: Ion-doped pair plasma? - → Acceleration via Resonant Cyclotron Absorption?