PICSARs: PIC Simulations of Acceleration in Relativistic shocks (and nice movies, too!)

Lorenzo Sironi & Anatoly Spitkovsky

Nonlinear Processes in Astrophysical Plasmas, KITP

September 29th, 2009

Relativistic shocks in astrophysics

- Are shocks responsible for the nonthermal emission from GRBs, PWNe and AGN jets and for the acceleration of CRs?
- How does the efficiency of particle acceleration depend on the magnetic field strength and inclination and the flow composition?
- How do particle acceleration and magnetic field generation in shocks translate into the observed emission signatures?

Method: Self-consistent first-principle particle-in-cell (PIC) numerical simulations...

Simulation setup

- Upstream flow is e⁻- e⁺ or e⁻- p⁺ (m_p/m_e=16-100) cold plasma with bulk Lorentz factor γ_0 =15 and magnetization $\sigma = B_u^2/(4\pi\gamma_0 n_u m_p c^2)$ = 0-0.1. We also vary the wall-frame magnetic obliquity θ .
- 2.5D simulations (100 c/ ω_{pe} X 9000 c/ ω_{pe}) with out-of-plane magnetic field; main results confirmed by 3D simulations

Which magnetization regime?

• Unmagnetized shocks ($\sigma=0$): mediated by the Weibel instability

- Upstream (Weibel) filaments in density and ϵ_{B}
- Magnetic energy generation at the shock

• Magnetized perpendicular shocks (σ =0.1 & θ =90°): mediated by magnetic reflection

σ =0 vs σ =0.1 & θ =90°: shock structure

σ =0 vs σ =0.1 & θ=90°: shock structure σ =0.1 & θ=90°

σ =0 vs σ =0.1 & θ =90°: particle acceleration

- For σ =0.1 & θ =90° shocks, downstream spectrum is purely thermal
- In σ=0 shocks, downstream spectrum well fitted by low-energy Maxwellian + high-energy power-law tail with exponential cutoff
- The nonthermal tail has slope -2.4±0.1 and contains ~1% of particles and ~10% of energy

$$\sigma$$
=0 e⁻-e⁺ shock

 σ =0 e⁻-p⁺ shock (m_p/m_e=32)

(Spitkovsky 2008)

(Martins et al. 2009)

Acceleration mechanism in σ=0 shocks

Fermi-like process: particles get accelerated by scattering off the self-generated Weibel filaments

What about changing the field obliquity?

- In superluminal (vs subluminal) shocks, a particle sliding along magnetic field lines CANNOT (vs CAN) return upstream
- For γ_0 =15 and σ =0.1, the critical obliquity is $\theta_{crit} \approx 34^\circ$ in the wall frame; in the upstream frame $\theta'_{crit} \approx 34^\circ/\gamma_0$
- θ_{crit} weakly depends on both γ_0 (≥ 5) and σ (0.01< σ <0.3)
- How does the field obliquity affect the shock structure and the efficiency of particle acceleration?

σ =0.1 & θ =15°: a subluminal shock

Subluminal → Returning particles (mostly IONS for e⁻-p⁺ shock)

σ =0.1 & θ =15°: a subluminal shock

Returning particles

Upstream waves (oblique vs longitudinal wavevector, linear vs circular polarization)

σ =0.1 & θ =45°: a superluminal shock

 e^- -p+ shock (m_p/m_e=16) e-e+shock

Superluminal → No returning particles → No upstream waves

σ=0.1 downstream spectra: e⁻-e⁺ shock

 Superluminal magnetized shocks DO NOT significantly accelerate, subluminal shocks DO, the more efficiently the closer to θ_{crit}≈34°

σ=0.1 e⁻-e⁺ shocks

As θ increases from 0° to 30°:

- Power-law slope from -2.8 to -2.3
- Number fraction from 1% to 2%
- Energy fraction
 from 5% to 13%

Acceleration mechanism: low obliquity

 Diffusive Shock Acceleration (DSA) by stochastic scattering between the shock layer and the upstream oblique waves

$$\sigma$$
=0.1 θ =0° e⁻-e⁺ shock

Acceleration mechanism: high obliquity

• θ≤θ_{crit}: Shock-Drift Acceleration (SDA) by the background E_u after particles are reflected upstream along the oblique background B_u

$$\sigma$$
=0.1 θ =30° e⁻-e⁺ shock

Upstream oblique waves mediate the injection process

σ=0.1 downstream spectra: e⁻-p⁺ shock

lon spectra resemble pair spectra of e⁻-e⁺ shocks:

- negligible acceleration for superluminal configurations
- with increasing θ from 0° to 30°, slope from -3.0 to -2.2, number fraction from 2% to 5%, energy fraction from 10% to 25%

Electron acceleration in e⁻-p⁺ shocks is a factor of 5-10 less efficient than ions

Ion vs electron acceleration (1/2)

 σ =0.1 θ =15° e⁻-p⁺ shock: IONS get accelerated by scattering off the self-generated upstream longitudinal waves

Ion vs electron acceleration (2/2)

σ=0.1 θ=15° e⁻-p⁺ shock: **ELECTRONS** are more strongly tied to the magnetic field lines and get quickly advected downstream

Varying σ in e⁻-p⁺ shocks

With increasing σ , electrons are more tied to magnetic field lines

- → Once advected downstream, it is harder for them to come back upstream
- → Lower efficiency of electron acceleration, independent of θ

Radiation signatures of σ=0 shocks

Radiation spectrum from simulation particles traced in the

self-consistent fields

 Low-frequency spectral slope is consistent with synchrotron theory: Line-of-Death puzzle in GRB prompt spectra cannot be solved by the jitter paradigm

 Significant contribution to the radiation spectrum by upstream particles

Summary (1/2)

- Relativistic unmagnetized shocks are mediated by the Weibel instability, magnetized (σ=0.01-0.1) perpendicular shocks by magnetic reflection
- If σ=0, ~1% of particles and ~10% of energy are stored in a suprathermal tail (both for e⁻-e⁺ and e⁻-p⁺ shocks)

• If $\sigma \ge 0.01$:

e⁻-e⁺ shocks are efficient accelerators (~1% by number, ~10% by energy) only for subluminal field obliquities (θ<θ_{crit}≈34°)

e-p+ shocks:

ion acceleration only for subluminal configurations (~3% by number, ~20% by energy)

electron acceleration suppressed by a factor of 5-10 wrt ions even for subluminal obliquities, especially for high magnetizations (σ ~0.1).

Summary: particle acceleration (2/2)

e⁻-e⁺ shock (ions in e⁻-p⁺ shocks)

electrons in e⁻-p⁺ shocks

 Acceleration via a Fermi-like mechanism for unmagnetized or quasi-parallel shocks, via Shock-Drift for θ≤θ_{crit} magnetized shocks

Implications

Constraints on the composition and magnetization of the flow:

- If electron-positron plasma, then nearly-parallel shocks (in the upstream fluid frame $\theta'_{crit} \approx 34^{\circ}/\gamma_0$) are required for efficient particle acceleration; or magnetization must be $\sigma \leq 10^{-3}$
- If electron-ion plasma, magnetization must be σ≤10⁻² regardless of the magnetic obliquity, since for σ~0.1 shocks, electron acceleration is inefficient even for subluminal configurations.

Caveats:

- Long-term shock evolution? Results from 3D simulations? Realistic mass ratios?
- Different magnetic field geometry in the upstream flow: Magnetic turbulence? Striped wind? → Acceleration via reconnection?
- Different composition of the upstream flow: Ion-doped pair plasma?
 - → Acceleration via Resonant Cyclotron Absorption?