Observations of

Pulsar Wind Nebulae

- I. Injection Spectrum
- Late-Phase Evolution
- II. PWNe and Magnetars

PWNe and Their SNRs

- Pulsar Wind
- sweeps up ejecta; shock decelerates flow, accelerates particles; PWN forms
- Supernova Remnant
- sweeps up ISM; reverse shock heats
 ejecta; ultimately compresses PWN; energy distribution of particles in nebula tracks
 evolution; instabilities at PWN/ejecta interface may allow particle escape

evolution; instabilities at PWN/ejecta interface may allow particle escape
Nonlinear Processes in Astrophysical Plasmas (KITP
2009)

Broadband Emission from PWNe

 Spin-down power is injected into the PWN at a time-dependent rate

Assume power law input spectrum:

- from electron population evolved nebula

10-6

 10^{-5}

10+

Nonlinear Processe 2009)

 10^{2}

 10^{-2} 10°

Gelfand et al. 2009

Get associated synchrotron and IC emission

- note X-ray synchrotron losses beyond cooling break

- joint fitting of synchrotron and IC spectra give B

Patrick Slane (CfA)

A Point About Injection

- Standard assumption is a power law input electron spectrum
 - this produces synchrotron break where synchrotron lifetime of particles equals age of PWN
- If injection spectrum has additional structure (e.g. lower energy break), this imprints itself onto the nebula spectrum
- get PWN spectrum with multiple breaks

Patrick Slane (CfA)

Broadband Observations of 3C 58

- 3C 58 is a bright, young PWN
- morphology similar to radio/x-ray; suggests low magnetic field
- PWN and torus observed in Spitzer/IRAC

Broadband Observations of 3C 58

- 3C 58 is a bright, young PWN
- morphology similar to radio/x-ray; suggests low magnetic field
 - PWN and torus observed in Spitzer/IRAC
- Low-frequency break suggests possible break in injection spectrum
- IR flux for entire nebula falls within the extrapolation of the X-ray spectrum
 indicates single break just below IR
- Torus spectrum requires change in slope between IR and X-ray bands
- challenges assumptions for single power law for injection spectrum

Broadband Observations of G21.5-0.9

Broadband Observations of G21.5-0.9

Chandra

 PWN and core also seen by Chandra and Spitzer

Spitzer 5.8 μm

 Broadband spectrum shows distinct low-frequency break, like 3C 58
 excess in IR may be indicative of ejecta component (Zajczyk et al.

in prep)

Broadband Observations of G21.5-0.9

Chandra

 PWN and core also seen by Chandra and Spitzer

 Broadband spectrum shows distinct low-frequency break, like 3C 58
 excess in IR may be indicative of ejecta component (Zajczyk et al.

- Emission from core complicated
- appears to require multiple changes in curvature

in prep)
Nonlinear Processes in Astrophysical Plasmas (KITP 2009)

Patrick Slane (CfA)

- Vela X is the PWN produced by the Vela pulsar
 - apparently the result of relic PWN being disturbed by asymmetric passage of the SNR reverse shock
- Elongated "cocoon-like" hard X-ray structure extends southward of pulsar
 - clearly identified by HESS as an extended VHE structure
 - this is not the pulsar jet

Understanding Vela X: Fermi

- Broadband spectrum for PWN suggests two distinct electron populations
 - radio-emitting population will generate IC emission in LAT band
 - spectral features will identify distinct photon population and determine cut-off energy for radio-emitting electrons

Understanding Vela X: Fermi

- Broadband spectrum for PWN suggests two distinct electron populations
 - radio-emitting population will generate IC emission in LAT band
 - spectral features will identify distinct photon population and determine cut-off energy for radio-emitting electrons

Understanding Vela X: XMM

- Broadband spectrum for PWN suggests two distinct electron populations
 - radio-emitting population will generate IC emission in LAT band
 - spectral features will identify distinct photon population and determine cut-off energy for radio-emitting electrons
- XMM large project (400 ks) to study ejecta and nonthermal emission now underway; images reveal considerable structure and spectral variation

PWNe around RRAT J1819-1458

- near magnetars in P-Pdot diagram
- only known X-ray RRAT; parameters similar to other old pulsars
- • $\dot{E} = 3 \times 10^{32} \text{ erg s}^{-1} < 0.1 L_{x,psr}$
- some other energy source for x-rays;
 magnetically powered?
- Chandra observations reveal extended emission associated with source
 - L_{x,pwn} = 0.2Ė much higher than for otherPWNe(although distance/flux uncertainties could lower this to somewhat more reasonable values)

 Nonlinear Processes in Astrophysical Plasmas (KITP)

Patrick Slane (CfA)

Nonlinear Processes in Astrophysical Plasmas (KITP)
2009)

PWNe around RRAT J1819-1458

- P = 4.3 s, B = 5 x 10^{13} G, $\tau_c \approx 100$ kyr
 - near magnetars in P-Pdot diagram
- only known X-ray RRAT; parameters similar to other old pulsars
- • $\dot{E} = 3 \times 10^{32} \text{ erg s}^{-1} < 0.1 L_{x,psr}$
- some other energy source for x-rays;
 magnetically powered?

- Chandra observations reveal extended emission associated with source
 - L_{x,pwn}= 0.2Ė much higher than for otherPWNe(although distance/flux uncertainties could lower this to somewhat more reasonable values)

 Nonlinear Processes in Astrophysical Plasmas (KITP)

Patrick Slane (CfA) Nonlinear Processes in Astrophysical Plasmas (KITP)
2009)

PWNe around 1E 1547.0-5408

- located in SNR; SGR-like bursts confirm source as magnetar; also radio transient

- also magnetically powered?
- Chandra observations reveal extended emission associated with source
 - L_x/Ehigher than formost pulsars; how is X-ray nebula nebula produced?
 - does PWN point to a fast initial spin period for magnetars?

Patrick Slane (CfA)

PWNe around 1E 1547.0-5408

- P = 2.1 s, B = $2.2 \times 10^{14} \text{ G}$
- located in SNR; SGR-like bursts confirm source as magnetar; also radio transient
- • $\dot{E} = 1 \times 10^{35} \text{erg s}^{-1} \approx L_{x,psr}$
- also magnetically powered?

- Chandra observations reveal extended emission associated with source
 - L_x/Ehigher than formost pulsars; how is X-ray nebula nebula produced?
 - does PWN point to a fast initial spin period for magnetars?

Nonlinear Processes in Astrophysical Plasmas (KITP 2009)

Patrick Slane (CfA)

Conclusions

I. Injection Spectrum

- PWN are reservoirs of particles that track pulsar evolution, and eventually seed ISM w/ energetic particles
- Spectrum of region near TS appears to deviate significantly from single PL; ramifications for broadband modeling
- Low energy particles may represent a separate population. From where?

I. Late-Phase Evolution

- Late-phase results in mixing of thermal and nonthermal gas, with modification to particle spectrum
- As predicted(?), but not well-studied observationally

II. PWN and Magnetars

- Observations of RRAT J1819-58 and 1E 1547.0-5408 show that magnetar-like objects <u>can</u> have PWNe-like structures.
- Powering by pulsar spin-down energetically feasible, but is that what is going on?